Image de la semaine | 04/02/2019
Les ophiolites en 180 photos – 5/7 Le Moho
04/02/2019
Résumé
Le Moho pétrologique dans les ophiolites : contact entre manteau (péridotite, serpentinite, ophicalcite tectonique) et roche crustale (gabbro, basalte, ophicalcite sédimentaire, turbidite, radiolarite).
Avant-propos
Le but de cette série de sept “images de la semaine“ n'est pas d'expliquer la genèse de la lithosphère océanique, ni la mise en place des ophiolites sur les continents, ni la géologie précise des ophiolites prises en exemple, mais simplement d'être un album d'environ 180 photos (un clin d'œil au concours Ma thèse en 180 secondes), une banque de données photographiques que chacun pourra utiliser pour illustrer/démontrer ses propos. Ces images montreront divers aspects de divers cortèges ophiolitiques, ophiolites “complètes” car issues de dorsales rapides, ou beaucoup plus “réduites” car issues de dorsales lentes. Il s'agira uniquement de photos prises sur le terrain, sans photo de lame mince, sans diagramme, sans analyse chimique… On se limitera à ce qui découle de l'histoire océanique de l'ophiolite, sans aborder ce qui est lié aux phénomènes de subduction/obduction/collision. Cet album photo comporte sept semaines/chapitres : (1) le manteau, (2) les gabbros, (3) le cortège filonien, (4) les basaltes en coussins (pillow lavas), les coulées et les sédiments, (5) le Moho, (6) l'extension spatiale et temporelle du magmatisme, et (7) l'hydrothermalisme. Un schéma des deux types d'ophiolites sera placé à la fin de chaque article, pour que chacun puisse (1) situer les divers objets photographiés dans le(s) modèle(s), et (2) comparer réalité naturelle et modèles. Le choix des photos est forcément subjectif, intersection entre ce que je connais personnellement et ce que je pense utile à tout un chacun selon ses besoins, pour que les ophiolites ne soient pas réduites ou à un (des) modèle(s) théorique(s) ou au seul Chenaillet pour les plus chanceux qui peuvent y aller.
Sauf pour les ophiolites “françaises” (les Alpes et la Désirade en Guadeloupe), toutes les photographies de ces articles ont été prises lors d'excursions géologiques organisées par le Centre briançonnais de géologie alpine (CBGA) et encadrées par Romain Bousquet (Université de Kiel) pour Chypre, par Jean Pierre Bouillin (Université de Grenoble) pour l'ile d'Elbe, par Emmanuel Ball (Université de Montpellier) ou Aymond Baud (Université de Lausanne) pour l'Oman, et par Thierry Juteau (Université de Brest) pour la Turquie. Sans eux, je n'aurais jamais pu prendre ni commenter ces 180 photographies.
Le Moho, nommé ainsi en l'honneur du croate Andrija Mohorovičić (1857-1936), correspond initialement et par définition à une limite sismologique, limite étroite présentant une accélération “brutale” de la vitesse des ondes sismiques, vitesse égale à 6 à7 km/s pour les ondes P au-dessus du Moho, vitesse supérieure à 8 km/s en dessous. Ce Moho peut correspondre à deux situations différentes :
- un Moho “pétrologique” où cette limite correspond à une limite entre deux roches très différentes : granite, gabbro, gneiss, roches sédimentaires… et autres roches crustales surmontant de la péridotite ;
- un Moho sismologique mais non pétrologique où cette limite correspond à une différence d'état, par exemple d'hydratation, au sein d'une même roche. C'est le cas d'une limite de serpentinisation au sein du manteau, avec des serpentinites surmontant une péridotite quasiment anhydre.
Dans le cas des lithosphères océaniques à croûte épaisse, le Moho que révèle la sismique correspond à un Moho pétrologique où du gabbro surmonte de la péridotite peu hydratée. Dans le cas des lithosphères océaniques à croûte mince (ou absente), comme la vitesse des ondes sismiques est voisine dans gabbro et serpentinite, et que le front de serpentinisation est souvent plus profond que la base des basaltes ou gabbros (quand il y en a), le Moho que révèle la sismique correspond à un front de serpentinisation, où de la serpentinite surmonte de la péridotite peu hydratée. Ce n'est pas un Noho pétrologique.
Le Moho n'est pas toujours une limite d'une grande netteté. Par exemple, dans les ophiolites issues de dorsales rapides, souvent le manteau supérieur juste sous la croûte magmatique est souvent assez riche en filons de gabbro, alors que la base des gabbros peut être riche en cumulats de ferromagnésiens. Dans les ophiolites issues de dorsales lentes, il y a souvent un niveau de brèches serpentineuses (les ophicalcites[1]) entre la serpentinite et les sédiments.
Nous allons voir deux types de paléo-Moho pétrologiques : le Moho d'ophiolites issues de dorsales rapides (Oman) où du gabbro repose sur de la péridotite, et le Moho d'ophiolites issues de dorsales lentes (Alpes) où ce sont des sédiments qui reposent sur de la péridotite (hydratée).
Au début des années 1970, la somme de toutes les données géophysiques et géologiques a permis d'établir le modèle de la tectonique des plaques. La sismologie avait montré que sous les océans le Moho était partout entre 5 et 7 km sous le plancher océanique. Les dragages au niveau des dorsales remontaient toujours des basaltes. L'exploration des massifs qu'on appelait des ophiolites depuis des dizaines d'années, en particulier les ophiolites de Chypre, de Grèce et de Yougoslavie, ophiolites peu affectées par la tectonique «“alpine”, montraient des caractéristiques physiques (épaisseur, nature des roches du sommet, vitesse de propagation des ondes sismiques dans les différentes couches en particulier celle de la base…) qui les faisaient ressembler à la partie superficielle de la lithosphère océanique. Ainsi est née l'analogie (toujours valable) « ophiolites = sommet de la lithosphère océanique ». Il y avait bien à l'époque des « vieux géologues de terrains » qui faisaient remarquer que dans les ophiolites, parfois, les sédiments reposaient sur la péridotite, que l'épaisseur de 5 à 7 km de la croute révélée par la sismique sous tous les océans ne se retrouvaient pas pour toutes les ophiolites… Mais ces « vieux géologues de terrains » niaient parfois la tectonique des plaques, et on ne les écoutait pas. Quand, en 1975, j'étais étudiant en M1 (selon la terminologie actuelle), mes professeurs nous ont montré le Chenaillet. Et le modèle d'une croûte de 5 à 7 km était tellement “obligatoire” que, pour expliquer la très faible épaisseur des gabbros (moins de 200 m) et l'absence de cortège filonien au Chenaillet, on nous disait que des failles, lors de l'obduction, avaient fait disparaitre les 4/5 des gabbros et la totalité du cortège filonien. On ne nous avait pas montré ces failles. Et quand en 1978 on dragua de la serpentinite au fond de l'Atlantique, l'impérialisme du modèle « croûte océanique = basalte + filon + gabbro = 5 à 7 km » était tel qu'on a proposé un temps que ces affleurements de serpentinite étaient dus à des diapirs de manteau hydraté “crevant” la croute “normale”, la serpentinite étant peu dense et très ductile. Il a fallu attendre le début des années 1980 pour qu'on comprenne qu'une dorsale très lente pouvait (1) ne produire que très peu de roches magmatiques sous forme de petits volcans sous-marins isolés et d'intrusions intra-mantelliques limitées de gabbro, (2) mettre à nu le manteau par le jeu de failles normales à faible pendage (faille de détachement).
On a également compris pourquoi la sismique montrait partout un Moho à 5-7 km sous le fond des océans actuels (sédiments non compris) alors que la partie magmatique (gabbro + filons+ basalte) y a une épaisseur variant de 0 à 7 km : la vitesse des ondes sismiques dans la serpentine est environ la même que dans les gabbros ou les basaltes. Le Moho sismologique à 5-7 km de profondeur sous les océans à dorsale lente ne correspond pas à la limite gabbro/manteau, mais à la base du front de serpentinisation.
Pour ces fonds océaniques sans basalte et/ou sans gabbro, la croûte au sens pétrologique est souvent réduite aux sédiments qui se sont déposés sur le manteau serpentinisé.
Si votre établissement ne vous donne pas assez de crédits pour aller toucher le Moho en Oman ou à l'ile d'Elbe (bien que, pour celle-ci, ce soit bien moins cher et en Europe), on peut voir et toucher un Moho sédiments/manteau dans le massif du Chenaillet, bien que bien peu d'excursions fassent le détour là où les conditions d'affleurement sont les plus belles, au Monte Cruzore près du village de Champlas-Seguin. Le Monte Cruzore est en Italie, il est vrai, mais à seulement 10 km du circuit classique. Sur le circuit classique, on voit un contact gabbro/péridotite. Mais le gabbro forme une intrusion limitée dans le manteau et non pas une “couche” continue, et ce contact ne correspond pas à un “vrai” Moho. Au rocher de la Perdrix non loin du circuit classique, on voit très bien les sédiments (des radiolarites), assez mal le manteau, et encore plus mal le contact sédiments/manteau. À 500 m à l'Est du sommet du Mont Chenaillet, on voit du basalte reposer directement sur le manteau serpentinisé (cf. Les Pillows sur - et les filons dans - le Manteau au Chenaillet). C'est donc un “vrai” Moho pétrologique, où du matériel crustal repose sur du matériel mantellique. Au Monte Cruzore, on voit très bien des radiolarites reposer directement sur des serpentinites, un autre type de Moho pétrologique.
[1] Les brèches serpentineuses faites de serpentine dans un ciment calcitique sont appelées ophicalcites. On distingue 2 types d'ophicalcites, lorsque les brèches sont d'origine tectonique (cataclasites) on parle d'OC1, alors que les brèches sédimentaires sont appelées OC2.