Article | 03/06/2021
Rayonnement, opacité et effet de serre
03/06/2021
Résumé
Observer et comprendre les notions d'opacité et de transparence au rayonnement visible et infrarouge avec une caméra thermique, pour aborder sereinement le principe d'effet de serre radiatif et sa modélisation, et comprendre les spectres d'émission terrestres.
Table des matières
- Introduction : objectifs
- Approcher l'effet de serre avec des manipulations simples
- L'atmosphère terrestre
- Modélisation de l'effet de serre
- Bilan “réel” et changement climatique
- Analogies possibles pour l'effet de serre et son augmentation
- Conclusion
Introduction : objectifs
Partons d'un constat : la modélisation analogique de l'effet de serre est très difficile. De nombreuses expériences qui circulent, permettant de montrer une augmentation de température, ne montrent pas l'effet de serre comme il agit sur Terre.
Revenir aux fondamentaux des interactions rayonnement / matière permet de faire des manipulations simples et scientifiquement robustes avec des paramètres fixes, une variable, des témoins, etc. Ces manipulations touchent directement aux notions de rayonnement thermique, d'équilibre thermique, de transparence et d'opacité aux rayonnements (sur des matériaux condensés).
Passer ensuite à l'effet de serre terrestre demande l'effort supplémentaire de transposer ces notions au sol et à l'atmosphère en considérant l'équilibre thermique vis-à-vis du rayonnement dans le cadre d'un modèle uniquement radiatif (donc simplifié). On peut ensuite utiliser ce modèle pour comprendre les observations du rayonnement terrestre vu de l'espace. Enfin, on peut introduire une augmentation de CO2 afin de prédire ses conséquences !
Approcher l'effet de serre avec des manipulations simples
Des expériences qui ne représentent pas l'effet de serre mais sont malheureusement proposées pour l'illustrer
Deux expériences (trop) classiques sont rapidement rappelées.
Expérience 1 : 2 cristallisoirs à fond noir + 2 lampes + 2 sondes thermiques + une plaque de verre recouvre l'un des cristallisoirs. On allume les lampes (en respectant une mise en place la plus semblable possible), on mesure la température et on observe qu'après un certain temps, la température est plus haute dans le cristallisoir avec le couvercle de verre.
Dans les 2 cristallisoirs on chauffe le fond noir des cristallisoirs, qui chauffe l'air, air moins dense qui monte et soit peut petit à petit s'échapper / être remplacé par de l'air plus froid (pas de “couvercle”), soit qui reste piégé, se refroidit au contact de la plaque. Avec la plaque de verre, l'air du cristallisoir se réchauffe plus car l'air ne se refroidit qu'au contact de la plaque de verre, ce qui ne refroidit que peu l'air du cristallisoir par rapport à un apport d'air extérieur. L'effet observé n'est pas l'effet de serre “atmosphérique” mais un réchauffement de serre de jardinier par limitation physique de la convection (l'air chaud ne peut pas s'échapper)… même si parfois la plaque de verre est présentée comme un analogue de l'atmosphère car opaque aux infrarouges… mais cette expérience fonctionne aussi avec une plaque plastique transparente aux infrarouges.
Rappelons aussi que les ampoules “anciennes” à filament de tungstène produisent beaucoup d'infrarouge et chauffent donc les installations décrites aussi par le dessus (et pas seulement en chauffant le fond noir), plaque de verre comprise… L'atmosphère ne chauffe pas, elle, par le dessus.
Expérience 2 : 2 cristallisoirs à fond noir + 2 lampes + 2 sondes thermiques + l'un des cristallisoirs est rempli de ou enrichi en CO2 (bombe, cartouche de CO2, air expiré…). On allume les lampes, on mesure la température et on observe qu'après un certain temps, la température est plus haute dans le cristallisoir enrichi en CO2.
Si la température côté CO2 monte plus haut, c'est encore lié à une différence de convection. Le CO2 est plus dense que l'air, il faut donc que l'air enrichi en CO2 du cristallisoir soit plus chaud pour commencer à s'échapper et être remplacé par de l'air ambiant, comme dans le cristallisoir non enrichi qui, lui, voit l'air s'échapper plus tôt (à plus basse température). La température plus haute observée est, là encore, liée à la convection thermique non pas empêchée mais nécessitant une température plus haute pour commencer à permettre l'arrivée d'air ambiant plus frais dans le cristallisoir.
Ces deux manipulations simples montrent l'effet attendu “ça chauffe plus d'un côté que de l'autre” et du côté “attendu”… du fait d'effets convectifs mais pas à cause d'un effet radiatif comme pour l'effet de serre “atmosphérique”.
Retour aux fondamentaux avec des manipulations simples
Impossible de comprendre l'effet de serre si l'on n'a pas compris les bases des interactions rayonnement / matière.
Face à un rayonnement, un matériau peut être transparent ou opaque et, dans ce dernier cas, absorber ou réfléchir le rayonnement. Ces propriétés dépendent de la longueur d'onde du rayonnement considéré.
On va observer cela sur des solides courants soigneusement choisis. On transposera à l'atmosphère en “évitant” la physique plus complexe des interactions rayonnement / gaz.
Pour simplifier on va comparer rayonnement visible (lumière du Soleil, d'une lampe fluo ou LED qui l'imite) et rayonnement infrarouge ”thermique” – gamme de 4-5 à 25 μm ou 8 à 15 μm selon les définitions (émis par un corps ”chaud”, entre température ambiante et 100°C).
Matériaux, matériel
On utilise une tasse, une bouilloire et de l'eau. La tasse remplie d'eau chaude constitue le corps chaud émetteur d'infrarouge thermique pour les expériences.
Dans la première expérience, on utilise du plexiglas (PMMA), du polyéthylène (PE) basse densité transparent (emballage, sac congélation), du PE noir (sac poubelle) et de l'aluminium (feuille d'emballage de chocolat, par exemple). Dans la seconde expérience, on utilise plexiglas et aluminium et des supports pour les tenir en place.
L'observation est réalisée avec une caméra hybride visible / thermique. La caméra utilisée ci-après est une Seek thermal SQ-AAA (environ 800 €, il existe une version de moindre résolution à environ 600 €). La marque FLIR propose des caméras similaires ou des modules pour smartphone Android ou Apple à moins de 400 € (à brancher sur le connecteur du smartphone). D'autres appareils moins chers existent mais ne permettent pas forcément d'extraire photographies et vidéos (appareils pour professionnels travaillant dans l'isolation thermique, la recherche de pièces mécaniques en surchauffe, etc.).
Source - © 2021 Seek thermal
Expérience 1 – Comportement individuel des matériaux : opacité et transparence
Une tasse remplie d'eau chaude à environ 90°C (bouilloire portée à ébullition) est observée avec le capteur visible ou thermique et on fait passer les matériaux entre tasse et caméra. Si la tasse est cachée le matériau est opaque, si la tasse est visible le matériau est transparent aux longueurs d'ondes observées.
Source - © 2021 Olivier Dequincey - Patrick Thollot - ENS de Lyon |
On s'intéresse ici à l'illustration du pouvoir de transparence ou d'opacité entre le rayonnement visible et l'infra-rouge. Ces propriétés dépendent des matériaux mais aussi leur état de surface. Dans la suite de cet article, on considère des états de surface lisses, correspondant aux images expérimentales enregistrées.
Tableau 1. Opacité / transparence des matériaux testés
Matériau | Visible | IR thermique | Images visible / IR |
Plastique emballage (PE basse densité) | transparent | transparent | |
Plexiglas (PMMA) | transparent | opaque (absorbe **) | |
Aluminium | opaque (réfléchit *) | opaque (réfléchit **) | |
Sac poubelle noir (PE) | opaque (absorbe *) | transparent |
Expérience 2 – Opacité aux IR thermiques avec réflexion ou absorption / réémission
Deux parois, l'une en plexiglas et l'autre en aluminium, forment un angle légèrement obtus (pour éviter les réflexions d'une paroi vers l'autre) et une tasse remplie d'eau chaude est placée dans l'angle, à environ 2 cm des parois au plus près. On va observer l'opacité à l'IR thermique différente pour l'aluminium (réflexion) et pour le plexiglas (essentiellement absorption et réémission).
Source - © 2021 Olivier Dequincey - Patrick Thollot - ENS de Lyon |
Conclusion importante : comme nous le voyons dans cette expérience, un corps opaque qui absorbe du rayonnement thermique, chauffe et en émet un rayonnement à son tour.
Un corps n'a pas nécessairement besoin d'être chauffé au préalable, il peut aussi être le siège d'une réaction chimique, de radioactivité…
De plus, un corps qui ne chauffe pas réfléchit ou transmet le rayonnement. On approche ainsi la loi du rayonnement de Kirchhoff : à l'équilibre thermique les flux d'absorption et d'émission / transmission sont égaux.
L'atmosphère terrestre
Opacité et transparence de l'atmosphère terrestre
Source - © 2007 D'après Global Warming Art
L'atmosphère terrestre se rapproche du comportement du plexiglas : transparente au visible, opaque aux infrarouges “thermiques” (> 5 µm ) sauf vers 8-13 µm où elle est transparente aux infrarouges. On parle de « fenêtre » infrarouge de l'atmosphère. Par analogie avec une fenêtre qui est une zone dans un mur transparente au visible, cette fenêtre atmosphérique infrarouge est une gamme de longueur d'onde pour laquelle l'atmosphère est transparente : c'est bien une “fenêtre”, mais dans une dimension spectrale et non spatiale.
Rappels sur le corps noir
Un corps noir est un corps qui absorbe, sans la réfléchir ni la diffuser, toute l'énergie électromagnétique qu'il reçoit. Il reçoit de l'énergie et s'il n'en émettait pas, sa température augmenterait indéfiniment... Ceci est irréaliste, un corps noir réémet donc l'énergie qu'il a absorbée sous forme de rayonnements électromagnétiques.
La quantité d'énergie réémise dépend de sa température. Ainsi, il existe une "loi de rayonnement du corps noir" qui donne la valeur de l'énergie émise en fonction de la température du corps noir (loi de Stefan-Boltzmann) : F = σ.T4, avec F, densité de flux d'énergie émise par la surface du corps noir (W.m−2), T la température absolue (K), et σ la constante de Stefan-Boltzmann (~5,67.10−8 W.m−2.K−4). Plus la température est élevée, plus l'énergie réémise est importante.
Le rayonnement électromagnétique émis est un spectre avec un maximum de luminance à une longueur d'onde λmax dépendant elle aussi de la température de surface du corps noir selon la loi Wien : λmax ≈ 2,898.10−3 / T, avec λ en m et T en K. Plus la température augmente plus le “pic” d'énergie est dans les courtes longueurs d'ondes. Applications numériques : la surface du Soleil est à une température moyenne d'environ 5800 K, son “pic” est donc vers 5.10−7 m, soit 0,5 μm ou 500 nm (dans le spectre visible, spectre allant de 380 à 780 nm), la surface d'un corps à 20°C (293 K) voit son pic aux alentours de 9,9.10−6 m soit 9,9 μm (dans l'infrarouge thermique).
Source - © 2006 4C / wikimedia – CC BY-SA 3.0
Spectre moyen d'émission terrestre comparé au spectre du corps noir
Un spectre moyen issu d'observations disparates
Spectres d'émission en des lieux d'observation différents
Source - © 2021 Modifié d'après Florides et al. [GF]
Images de la Terre selon divers canaux d'observation spectrale
Les 2 images suivantes sont des observations par le satellite Météosat du 27 janvier 2020, images “centrées” sur le méridien 0°. L'intensité d'émission thermique est rendue par un dégradé en “niveaux de rouge” partant du noir pour l'absence de signal (absorption, diffusion), puis allant du rouge foncé pour le “ très froid”, au rouge de plus en plus clair plus il fait “chaud” pour arriver au blanc pour un signal très intense (signal maximum “ très chaud”).
Revenons un instant à la seconde expérience avec la caméra thermique. L'observation du canal à 10,8 μm correspond à une observation directe de la tasse (pas d'obstacle aux infrarouges) : la couleur / température dépend alors de la température de la tasse. L'observation à 6,2 μm correspond, elle, à l'observation de la tasse à travers la plaque de plexiglas (obstacle aux infrarouges directs) : la température observée est celle de la plaque réchauffée par la tasse et dépend donc de la température de la tasse mais aussi de la distance entre la tasse et la plaque, d'autant moins réchauffée qu'elle est loin de la tasse. Dans l'expérience filmée, à distance tasse-caméra fixe, plus la plaque sera éloignée de la tasse chaude, plus sa température d'équilibre sera basse.
Modélisation de l'effet de serre
Bilan radiatif simplifié de la Terre
On va construire un modèle de Terre à partir des trois hypothèses suivantes.
- L'atmosphère a un comportement composite face au rayonnement : transparente au visible, partiellement opaque au thermique (opacité dans les bandes où les GES absorbent).
- Les transferts d'énergie sont supposés uniquement radiatifs. C'est le cas avec l'espace ; c'est une simplification avec le sol et à l'intérieur de l'atmosphère.
- Il y a équilibre thermique : tout ce qui est absorbé est émis.
On ajuste ce modèle avec 3 paramètres d'entrée fixés, mesurables sur Terre,
- un rayonnement visible d'une puissance de 340 W/m² arrive au sommet de l'atmosphère (mesure par satellite tourné vers le Soleil),
- un rayonnement visible d'une puissance de 100 W/m² est réfléchi par la Terre (mesure par satellite tourné vers le sol),
- la surface de la Terre est à 15°C de moyenne et se comporte comme un corps noir ; la Terre émet donc 390 W/m² de rayonnement infrarouge thermique.
À partir de ce schéma et de ces données, complétons le bilan.
Puisque le rayonnement solaire de 340 W/m² est réfléchi à hauteur de 100 W/m², on en déduit que le sol reçoit 340 − 100 = 240 W/m² d'énergie sous forme de rayonnement visible issu du Soleil. Comme le sol émet 390 W/m², c'est qu'il reçoit aussi 390 − 240 = 150 W/m² d'énergie de l'atmosphère (seule autre source).
L'atmosphère émet donc 150 W/m² vers le sol sous forme d'infrarouge thermique. L'atmosphère ”chaude” émet son rayonnement de manière égale dans toutes les directions, donc elle émet autant ”vers le haut” que “vers le bas”. Au total, l'atmosphère émet donc 300 W/m². Étant transparente au rayonnement visible, l'atmosphère reçoit donc cette énergie sous forme infrarouge de l'autre source, la surface de la Terre.
Si le sol émet 390 W/m² et que 300 W/m² sont absorbés par l'atmosphère, c'est que le reste 390 − 300 = 90 W/m² est émis directement vers l'espace (fenêtre infrarouge). Vérifions alors les flux au sommet de l'atmosphère : arrivent 340 W/m² de rayonnement visible, repartent 100 W/m² de visible réfléchi, 150 W/m² d'infrarouge émis par l'atmosphère et 90 W/m² émis par la surface de la Terre ; on a bien équilibre puisque 340 = 100 + 150 + 90.
Une atmosphère réelle non isotherme, plus ou moins opaque
Une simplification majeure du modèle radiatif présenté est que l'atmosphère réelle n'est pas isotherme. En réalité, la température décroit avec l'altitude (jusqu'à 20 km d'altitude correspondant à plus de 95 % de la masse de l'atmosphère). Donc ce qui est plus haut est plus froid. Le sommet de l'atmosphère, plus froid, rayonne moins d'IR thermique que sa base, plus chaude !
Ceci se voit bien lorsqu'on compare les mesures effectuées depuis un avion ou un ballon-sonde à 20 km d'altitude (“sommet” de l'atmosphère), et depuis la surface du sol, à l'aplomb d'un même lieu à un instant donné.
L'atmosphère vue depuis 20 km d'altitude (ballon-sonde), en regardant vers le bas, montre un spectre identique à celui vu de l'espace (la quasi-totalité de la masse de l'atmosphère étant sous 20 km d'altitude). Aux longueurs d'onde où l'atmosphère est transparente, on voit le sol d'en haut, l'espace d'en bas. Aux longueurs d'onde où l'atmosphère est opaque on voit, d'en haut vers le bas, le ”sommet” de la masse d'air opaque, plus froid, donc moins rayonnant que le sol, et, d'en bas vers le haut, la “base” de la masse d'air opaque, chaude, plus rayonnante l'espace et que son “sommet”. Différence fondamentale par rapport à la plaque de plexiglas et au modèle radiatif simple : l'atmosphère ne rayonne pas pareil à sa base et à son sommet.
Ajout de GES et hauteur limite d'opacité
Si l'atmosphère devient plus opaque à pression égale (plus de GES en proportion), la hauteur limite d'opacité (qui dépend d'une pression absolue de GES) monte, est donc plus froide et le flux émis vers l'espace diminue. Mais le flux total vers l'espace doit rester le même (équilibre), c'est-à-dire égal au flux solaire reçu ! Ceci signifie donc que c'est le sol qui compense en émettant plus au travers la fenêtre à infrarouge… ce qui n'arrive que si le sol se réchauffe (à flux solaire constant) !
Cette relation reste vraie tant que n'interviennent pas de phénomènes de saturation, qu'on reste dans des variations “réalistes” (dans les gammes des derniers millions d'années), et qu'alors la limite d'opacité reste dans la troposphère.
Modèle numérique simple pour montrer la conséquence de l'ajout de gaz à effet de serre : exemple du CO2
À l'aide du code du modèle MODTRAN, deux simulations numériques sont lancées, l'une avec une teneur atmosphérique en CO2 de 280 ppm (teneur « pré-industrielle »), l'autre avec une teneur extrême de 2800 ppm pour visualiser l'effet de cet hausse de CO2 sur le spectre d'émission de la Terre et sa température de surface.
Bilan “réel” et changement climatique
Des observations et mesures réelles permettent de proposer un schéma du bilan radiatif de la Terre, tel celui proposé par le laboratoire NASA Langley Research Center.
Source - © 2019 NASA-LaRC
Un bilan radiatif “réel” est complexe à réaliser. Qualitativement, le bilan proposé se base sur de nombreuses études menées depuis les années 1900 jusqu'à aujourd'hui. Il prend en compte tous les phénomènes physiques, actions et rétro-actions, reconnus, compris, modélisés… Ce côté qualitatif est robuste, le système climatique est bien connu aujourd'hui (on arrive à comprendre les observations passées et à les “reproduire” par des modèles. Quantitativement parlant, un bilan chiffré est complexe à réaliser compte tenu des nombreux paramètres à mesurer, des différents outils utilisés, et des marges d'erreurs propres à chaque type de mesure et type d'instrument. Des études ont alors porté sur l'amélioration de la qualité des mesures, mais aussi sur la comparaison de données, sur la compilation de données nouvelles pour améliorer la précision de mesures, la répétition de mesures sur plusieurs années… Certains ajustements sont aussi apportés pour assurer l'équilibre de certains transferts d'énergie… C'est le résultat de ce travail qui est présenté. Il a été remis à jour 2 fois depuis sa première publication en 2004. Un déséquilibre énergétique au sommet de l'atmosphère y est systématiquement détecté.
Sur la base de ce bilan, le système Terre-atmosphère emmagasinerait de l'énergie (0,6 W.m−2) non restituée, et se réchaufferait donc (en parfaite adéquation avec les observations).
Les bilans théoriques à l'équilibre, pour une compréhension facile des processus majeurs, correspondent à des états stationnaires dans lesquels aucun paramètre ne bouge et pour lesquels les effets de perturbations antérieures sont stabilisés.
On voit ici que de faibles perturbations relatives (0,6 sur 340,4 soit moins de 2‰) suffisent à expliquer le changement climatique actuel (les forçages radiatifs proposés dans les modèles du GIEC sont aussi de l'ordre de quelques W.m−2 depuis le début de l'ère industrielle). Ces variations peuvent être naturelles et refléter une variation de l'insolation (distance Terre-Soleil), de l'albédo (nébulosité, neige, émissions volcaniques stratosphériques…), de l'effet de serre… Le forçage (le processus perturbateur avec conséquence énergétique) actuel est essentiellement d'origine anthropique et a pour origine l'émission de gaz à effet de serre (CO2 et CH4 principalement), émission qui, pour revenir aux modèles vus plus haut, ferme les fenêtres atmosphériques, augmente l'altitude de la limite d'opacité atmosphérique, ce qui est en cours d'être compensé par un réchauffement du sol émettant alors plus d'énergie dans les longueurs d'onde pour lesquelles l'atmosphère est transparente, avec arrivée à un nouvel état d'équilibre présentant un sol plus chaud.
Analogies possibles pour l'effet de serre et son augmentation
Nous proposons ici quelques analogies à l'effet de serre et à ses variations. Ce sont des "approximations" qui ne prennent pas en compte les rétroactions. Les analogies proposées cherchent à mettre en évidence qu'avec un flux entrant constant (chaleur, débit d'eau) on peut avoir une mesure de sortie variable (température, hauteur d'eau, pression). De même, un apport énergétique solaire externe constant donne une température d'équilibre au sol variable selon l'existence et l'intensité d'un effet de serre.
Une maison plus ou moins isolée
D'après la loi de Fourier, on a une densité de flux thermique, F (W.m−2), à travers les parois donnée par : F = λ . ΔT / e, avec λ la conductivité thermique des parois (W.m.K−1), e leur épaisseur (m), ΔT l'écart de température (K) entre intérieur et extérieur (T extérieure supposée fixe).
Le flux F est fixé (radiateur non thermostaté réglé sur une puissance constante) et analogue au flux de chaleur que la Terre et son atmosphère évacuent vers l'espace (= flux solaire absorbé).
On a deux façons de faire une analogie avec l'augmentation des gaz à effet de serre (GES) : on augmente l'épaisseur d'isolant e (“épaisseur” de GES dans l'atmosphère) ou l'on diminue la conductivité λ (atmosphère plus opaque). Ayant augmenté e et/ou diminué λ, le flux F étant constant, il en résulte que l'écart de température ΔT augmente. Si la température extérieure n'a pas changé, l'intérieur de la maison chauffe donc jusqu'à ce que l'augmentation de ΔT permette au flux F fixé de passer à travers les parois. À même apport de chaleur, on a une température différente selon la “facilité” d'évacuation de l'énergie vers l'extérieur.
Dans le cas de la conduction, le flux F est proportionnel à l'écart de température ΔT. Pour le rayonnement, le flux F est proportionnel à la puissance 4 de la température absolue, d'où l'écart de température Δ(T4).
Ainsi, augmenter l'épaisseur d'isolant e de sa maison de 1 % (× 1,01) multiplie ΔT (écart de température) par 1,01 : s'il fait −5°C dehors et qu'on chauffe à 15°C, l'écart de température passe de 20 à 20,2°C et il fait alors 0,2°C de plus, soit 15,2°C, après isolation. Si, pour un sol à 15°C, on augmente l'opacité de l'atmosphère de 1 %, on multiplie T (température absolue) par ≈1,0025 (racine quatrième de 1,01), et on passe de 288 K à 288,7 K, soit, dans ce cas, une augmentation de 0,7°C.
Un seau percé
Attention : idée délicate à faire passer car faisant d'une pression l'analogue d'une température…
Un seau percé de trous à sa base est placé sous un robinet ouvert à débit constant (analogue du flux thermique que la Terre absorbe = émet). La pression à la base du seau monte jusqu'à permettre un débit d'évacuation par les trous égal à celui du remplissage par le haut.
La hauteur d'eau / pression dans le seau est analogue à la température à la surface de la Terre. Le volume d'eau dans le seau est analogue à la quantité de chaleur à la surface de la Terre.
Si l'on bouche un ou plusieurs trous, le débit d'évacuation diminue (analogue à l'opacité de l'atmosphère arrêtant plus de rayonnement). Le niveau dans le seau monte alors (analogue à la chaleur qui s'accumule), augmentant la pression au niveau des trous, et donc le débit d'évacuation de chaque trou restant jusqu'à ce que le nouveau débit total compense exactement le débit du robinet. Un nouvel équilibre dynamique s'établit.
Attention aux malentendus possibles : la chaleur n'est pas un fluide !
Un pommeau de douche réglable
Attention : idée délicate à faire passer car faisant d'une pression l'analogue d'une température…
Avec un même débit d'eau sortant d'un pommeau de douche (analogue du flux thermique que la Terre évacue = le flux solaire reçu), on a une pression d'eau sortant du pommeau, celle dans le pommeau, variant selon l'ouverture des trous : avec beaucoup de trous ouverts (atmosphère plus transparente au rayonnement thermique) la pression est plus faible, avec peu de trous ouverts (atmosphère plus opaque au rayonnement thermique) la pression est plus forte. La pression dans le pommeau deviendrait un analogue de la température de la Terre. Le flux d'eau correspondrait au flux de chaleur.
Attention aux malentendus possibles : la chaleur n'est pas un fluide !
Conclusion
On a vu comment montrer expérimentalement opacité et transparence au rayonnement visible et infrarouge, ainsi que réflexion et absorption avec deux manipulations simples. On peut faire émerger la notion d'équilibre thermique radiatif.
On a utilisé les résultats de ces manipulations pour aborder l'atmosphère terrestre et ses propriétés radiatives (transparence et opacité, due aux GES).
On a construit un bilan radiatif simplifié de la Terre avec une atmosphère réaliste au premier ordre pour son opacité et sa transparence, mais isotherme.
On a vu la différence avec la véritable atmosphère, au gradient de température décroissant avec l'altitude (atmosphère non isotherme).
On a pu, avec ce modèle, mettre en évidence sur le spectre terrestre (et le bilan radiatif) la conséquence d'une augmentation de GES dans l'atmosphère : un réchauffement de la surface à flux solaire reçu constant.