Article | 02/02/2015
Rosetta et la comète 67P/Churyumov-Gerasimenko : résultats scientifiques publiés à partir des données du survol rapproché d'août et septembre 2014
02/02/2015
Résumé
Ce qu'on sait de la comète Chury (ou Tchouri, ou encore 67P/CG) après la publication d'un numéro spécial de Science. Propriétés physiques et chimiques, cartographie, morphologie, observation de jets de gaz... en attendant des données plus complètes.
Table des matières
La seconde moitié de l'année 2014 a été celle de la comète, avec la mise en orbite (parfaitement réussie) de la sonde Rosetta autour de la comète Chury en août, et l'atterrissage de Philae, à moitié réussi seulement, en novembre (mais un réveil n'est pas exclu à partir de mars 2015). Nous vous avons rapporté les deux premiers mois de cette exploration sous forme d'une conférence (film des diapositives avec le son, ou diapositives seules, ou son seul) mise en ligne le 17 octobre 2014 (La sonde Rosetta explore la comète Churyumov-Gerasimenko. Résultats communiqués au public au bout de 10 semaines d'approche, 1 mois avant l'atterrissage du module Philae ). Que s'est-il passé et quels ont été les principaux résultats depuis mi-octobre 2014 ?
Précisions préliminaires
Avant de décrire les résultats publiés récemment, deux précisions.
Rappelons tout d'abord l'intérêt de l'étude des comètes en général et de Chury en particulier.
- Les comètes sont des objets de petite taille, maintenues jusqu'à très récemment très loin du Soleil. Avant que leur orbite n'ait été modifiée et les amène "près" du Soleil, ces objets n'ont jamais été chauffés ni de l'intérieur ni de l'extérieur. Ce sont en quelque sorte des "fossiles" des premiers temps du système solaire, à peine "sortis du congélateur" où ils "dormaient" depuis plus de 4 Ga.
- Les comètes font partie, avec les chondrites (et les astéroïdes chondritiques), des candidats potentiels à l'origine de l'eau sur Terre.
- Les comètes (et les chondrites) sont, avec des réactions bien terrestres du genre "olivine + eau + dioxyde de carbone → serpentine + oxydes + molécules organiques", de bons candidats à l'origine des molécules pré-biotiques sur Terre, elles-même à l'origine de la vie terrestre.
- Les corps de glace, bien que presque oubliés dans les programmes de l'Éducation Nationale, font partie des constituants majeurs (et parmi les plus nombreux) du système solaire. Étudier leur nature, leur structure et leur fonctionnement est indispensable à une connaissance complète de notre système solaire.
Précisons aussi les sources qui permettent de suivre les découvertes de Rosetta et de Philae.
Toutes les données qui ont servi à écrire cet article (et les deux qui suivront) proviennent des sites de l'ESA (données parfois reprises et retraitées par des amateurs) et des articles du magazine Science du 23 janvier 2015.
Le 23 janvier 2015, la revue Science a publié un numéro spécial (23 January 2015, vol 347, issue 6220, pages 349-452) consacré aux résultats obtenus pendant les deux premiers mois de Rosetta autour de la comète (en août et septembre 2014). Les résumés des articles de ce numéro spécial Catching A Comet sont accessibles à tous, quant aux les articles complets, ils sont disponibles en ligne pour les abonnés, ou dans les bibliothèques. La majorité des photographies publiées dans ce numéro spécial sont aussi en ligne (avec parfois une meilleure résolution) sur le site de l'ESA.
L'ESA dispose de plusieurs sites dédiés dont, en particulier, Rosetta ainsi que le blog Rosetta blog. Sur ces sites, l'ESA a fourni des photographies (environ 250 entre début août 2014 et le 23 janvier 2015), des news (25 depuis le jour de la mise en orbite), et quelques (rares) informations scientifiques sur son blog. Ce qui caractérise la communication de l'ESA, c'est sa relative parcimonie en ce qui concerne les informations scientifiques. Il s'agit plus souvent de communication (pour ne pas dire de promotion) que de véritables informations scientifiques. Bien sûr, il est normal que les équipes scientifiques aient la primeur des données. Mais cela justifie-t-il cette rétention ? Pourquoi ne diffuser qu'aussi peu de résultats partiels et préliminaires (en précisant bien qu'ils ne sont que partiels et préliminaires) ? La situation la moins compréhensible concerne les images. Rosetta possède une caméra de navigation, de relativement basse résolution, et des caméras scientifiques à champs large (Wide Angle Camera) et étroit (Narrow Angle Camera) à bien meilleure résolution et aptes à faire des images "couleur" (l'expérience OSIRIS). Avant le 23 janvier, date à laquelle une trentaine d'images OSIRIS ont été publiées dans la revue Science et en même temps sur le site de l'ESA, la quasi-totalité des 250 images disponibles provenaient de la caméra de navigation et étaient de (relativement) basse résolution. Les images de haute résolution étaient retenues par l'équipe OSIRIS. Pour couvrir l'ensemble de la comète, il faut en général 4 images de cette caméra de navigation, qui couvrent chacune un champ plus petit que l'ensemble de la comète. Du fait de la révolution de Rosetta autour de la comète, et de la rotation de Chury sur elle-même, ces quatre photos, faites à quelques minutes d'intervalle ne sont pas prises exactement sous le même angle, et faire une mosaïque montrant l'ensemble de la comète n'est pas immédiat. Parfois l'écart des prises de vue est si grand que faire une mosaïque est impossible. Parfois, l'écart est si faible que le plus simple des logiciels non-professionels y arrive sans problème. Parfois la situation est intermédiaire, et élaborer une mosaïque nécessite un logiciel relativement élaboré. Souvent, dans ce cas, l'ESA y renonçait (la situation s'améliore avec le temps). Mais des amateurs "éclairés" font ces mosaïques et les mettent sur le web à la disposition du public. On peut, par exemple, trouver de telles mosaïques "privées" sur le site Rosetta mission. La parcimonie de mise à disposition du public des images à haute résolution (images OSIRIS) est d'autant plus difficile à comprendre qu'une comparaison avec la NASA, autre agence spatiale publique, vient tout de suite à l'esprit. En cinq mois et demi, l'ESA a rendu publiques 250 photographies de la comète, soit moins de 2 par jour en moyenne. Depuis août 2012, la NASA a rendu publiques la totalité des 213 100 images prises par Curiosity, soit en moyenne plus de 200 par jour. Pourquoi les scientifiques européens (en dehors de ceux des équipes de l'ESA), les enseignants et les étudiants européens, les astronomes amateurs européens… pourtant tous contribuables européens, pourquoi tous ces citoyens européens ont-ils plus facilement accès aux données américaines qu'aux données européennes, et en particulier à leurs images ? Si l'ESA et les laboratoires associés ont fait la preuve de leur grande maîtrise dans les sciences et les techniques spatiales, il y aurait vraiment quelque chose à changer dans la façon de penser et de mettre en œuvre la communication scientifique et à l'ESA, et dans les laboratoires qui "émargent" à l'ESA.
Nous allons diviser ces quatre derniers mois d'actualité cométaire en trois articles distincts.
Le premier article (ci-dessous) résume les principaux résultats scientifiques publiés dans le magazine Science du 23 janvier 2015, Catching A Comet, et ne concerne que les mois d'août et septembre 2014, ainsi que les quelques (trop) rares résultats (hors imagerie) publiés sur les sites de l'ESA à ce jour.
Le deuxième article consistera en une sélection d'images prises et/ou mises en ligne après le 17 octobre 2014, images rapidement commentées montrant l'extraordinaire variété des paysages à la surface de Chury.
Le troisième article résumera l'épopée de l'atterrissage de Philae et les (trop) rares résultats publiés sur les sites de l'ESA concernant les différentes expériences effectuées par Philae avant son entrée en hibernation.
Venons en donc maintenant au résumé des 8 articles du Science du 23 janvier 2015.
Une carte d'identité physique de 67P/Churyumov-Gerasimenko
Dimensions, masse, densité, topographie…
Pendant les mois d'août et septembre 2014, les principales caractéristiques physiques de Chury ont pu être déterminées avec précision. Les spectres IR ont permis de déterminer sa température. La mesure précise de la trajectoire de Rosetta a permis de déterminer sa masse (1013 kg). Les caméras braquées sur Chury ont permis de mesurer sa période de rotation (12,4043 h), ses dimensions précises (lobe principal : 4,1 × 3,2 × 1,3 km et lobe secondaire 2,5 × 2,5 × 2,0 km), et de retrouver son volume (21,4 km3). Masse et volume ont permis de calculer la masse volumique (470 kg/m3). La composition physique des panaches a pu être déterminée, avec un rapport (en masse) poussière/gaz de 4. Ce rapport donne une idée du rapport des masses composés réfractaires/composés volatils, rapport qui couplé à la masse volumique permet d'estimer la porosité du noyau de Chury (de 70 à 80%). Chury a plus la constitution d'une "éponge" que d'une roche ou d'un glaçon !
Source - © 2015 ESA, modifié
Quand on connaît masse, rayon, masse volumique, vitesse de rotation, on peut calculer le champ et le potentiel de gravité en surface avec des hypothèses simples, comme une répartition homogène de la masse volumique. Les auteurs n'ont pas pour l'instant publié de carte du champ, mais seulement (1) du potentiel (donnée peu exploitable par des non-spécialistes) et (2) la carte de la pente, c'est-à-dire de l'angle entre la surface et la perpendiculaire à la direction du champ de gravité. La surface est très souvent "en pente" (assez fréquemment entre 20 et 40°). Les grandes falaises qui dominent le "cou" ont une pente supérieure ou égale à 45°. Rappelons qu'avec un calcul simple, en assimilant Chury à une sphère de rayon 1500 m de masse volumique de 500 kg/m3, on trouve un champ g d'environ 2.10-4 m.s-2, soit environ 1/50 000 de la gravité terrestre.
Source - © 2015 H. Sierks et al., Science [4], modifié
Découpage régional et morphologique
Les études morphologiques ont permis de découper la surface de 67P/CG en dix-neuf régions, chacune étant définie par ses caractéristiques morphologiques. Ces régions ont reçu des noms tirés de divinités ou de personnages de l'Égypte antique.
Les variations spatiales d'Insolation
Rosetta a pu mesurer / calculer l'énergie reçue par chaque élément de la surface de Chury, énergie reçue directement du Soleil ou reçue depuis d'autres fragments de la comète réémettant / réfléchissant l'énergie solaire. La connaissance des paramètres orbitaux a permis de calculer la totalité de l'énergie reçue intégrée sur une révolution complète. Que ce soit pendant la période considérée par cet article (août-septembre 2014) ou sur l'ensemble d'une révolution, la région Hapi, celle qui montre actuellement le plus de dégagement gazeux, reçoit moins d'énergie que la moyenne de la surface. L'importance locale de ces dégagements doit avoir une autre origine qu'un excès d'énergie reçue. La température de surface a été mesurée entre -93°C et -43°C selon les régions pendant les mois d'août et septembre 2014.
Source - © 2015 H. Sierks et al., Science [4], modifié
Les dégagements gazeux de 67P/Churyumov-Gerasimenko
La quantité de gaz (principalement de vapeur d'eau) qui s'échappe de 67P/CG a pu être mesurée. Elle augmente au fur et à mesure que Chury s'approche du Soleil, passant de 0,3 kg/s à 1,2 kg/s de début juin à fin août 2014. Si on estime la variation quantitative de ce dégagement en fonction de sa distance au Soleil (de 1,24 à 6,68 ua le long d'une orbite complète) et qu'on l'intègre tout au long des 6,4 années (terrestres) son orbite, on obtient une perte par sublimation de 3 à 5.109 kg par orbite. La comète ayant une masse de 1013 kg, on voit que la comète « se dévolatiliserait » complètement par sublimation en quelques dizaines de milliers d'orbites, c'est-à-dire en quelque centaines de milliers d'années, temps géologiquement très bref. Cela fait donc très peu de temps (géologiquement parlant) que Chury a quitté la Ceinture de Kuiper et a acquis cette orbite la faisant passer près du Soleil tous les 6,4 ans.
Les différents instruments de Rosetta et surtout l'instrument ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) ont fourni la composition chimique et isotopique des gaz qui s'échappent de la comète. Le "débit" et la composition des gaz reçus par Rosetta varient en fonction de la rotation de Chury sur elle-même, de la révolution de Rosetta autour de Chury, et de la distance entre la comète et la sonde. C'est H2O qui constitue le composé majoritaire, suivit par CO2 et CO. À la "verticale" du lobe principal, CO2 et CO sont plus abondant qu'H2O, révélant une hétérogénéité de la composition des glaces superficielles qui se subliment. Les autres composés identifiés (cf. The ‘perfume’ of 67P/C-G,) sont : l'ammoniac (NH3), le méthane (CH4), le méthanol (CH3OH), le formaldéhyde (CH2O), le sulfure d'hydrogène (H2S), le cyanure d'hydrogène (HCN), le dioxyde de soufre (SO2) et le sulfure de carbone (CS2). Les proportions relatives de ces gaz n'ont pas encore été publiées.
Rosetta a aussi mesuré le rapport D/H (soit 2H/1H ou encore hydrogène" lourd"/hydrogène "léger") de la vapeur d'eau émise par la comète. L'origine de l'eau sur Terre est un problème vieux comme la géologie. Jusque dans les années 1990, l'eau et les autres éléments volatils étaient censés provenir du dégazage de la Terre pendant son accrétion-fusion-différenciation. Mais on s'est aperçu que la haute température superficielle régnant à cette époque avait du "éjecter" la majeure partie de ces volatils pendant cet épisode précoce. L'eau et les autres volatils présent aujourd'hui ont donc dû arriver sur une Terre déjà différencié et avec une surface déjà relativement refroidie. On parle de « vernis tardif ». Deux classes de corps ont pu apporter cette eau et les autres volatils. Ce sont (1) des corps silicatés s'étant condensés en deçà de la limite des glaces dans le système solaire interne, des astéroïdes, dont on connaît des fragments, les chondrites, dont certaines contiennent jusqu'à 15% d'eau, et (2) des comètes s'étant condensées au-delà de la limite des glaces dans le système solaire externe.
Parmi les comètes, et d'après les études de leur orbite, on peut distinguer deux réservoirs de comètes : les comètes venant du nuage de Oort, et celles venant de la ceinture de Kuiper, dont l'orbite parfois fortement perturbée par Jupiter donnerait des comètes à très courte période (comètes dites joviennes), comme 67P/CG. On espérait que le rapport D/H permettrait de distinguer parmi ces 3 sources possibles. En effet, l'hydrogène terrestre a un rapport D/H de 1,56.10-4. Le rapport D/H des météorites est voisin de celui de la Terre. Le rapport D/H des 9 comètes venant du nuage de Oort dont on connaissait le rapport D/H était différent de celui de la Terre, plus élevé, et voisin de 3.10-4. Le rapport D/H des 2 comètes venant de la ceinture de Kuiper dont on connaissait la valeur était voisin du rapport terrestre. On pensait donc que Chury aurait un rapport D/H "terrestre", confirmant par là-même que l'eau terrestre pouvait venir soit des astéroïdes, soit des comètes de type Kuiper (ou jovien).
Les mesures effectuées par ROSINA ont mis ce beau scénario "par terre", montrant que la réalité est plus complexe que ce qu'on pensait. 67P/Churyumov-Gerasimenko a en effet à un rapport D/H de 5,3±0,7.10−4, le plus élevé des rapports D/H mesurés pour des corps du système solaire. La classification des comètes est à revoir, et le problème de l'origine de l'eau terrestre n'a pas beaucoup évolué.
Tous ces gaz, H2O, CO2… sont partiellement ionisés par les rayons UV solaires. Ce plasma, dont la densité augmente avec la proximité du Soleil, interagit avec le vent solaire et donne naissance à une magnétosphère. La naissance et l'évolution de cette magnétosphère cométaire durant son approche du périhélie permettra de mieux comprendre les interactions complexes entre le vent solaire et les hautes atmosphères (cf. Nilsson et al., Birth of a comet magnetosphere: A spring of water ions).
D'autres caractéristiques ont été déterminées par Rosetta. L'ESA les a rassemblées dans une figure qu'elle a appelée COMET 67P / CHURYUMOV-GERASIMENKO'S VITAL STATISTICS.
Source - © 2015 ESA
La chimie et la couleur de la surface de 67P/Churyumov-Gerasimenko
La chimie de la surface de la comète peut être étudiée par Rosetta depuis son orbite de deux manières différentes : par l'étude des spectres (Ultra-Violet, domaine du visible ou Infra-Rouge) et par l'analyse des poussières captées par la sonde, poussières qui proviennent de la surface ou de la sub-surface. On peut citer le résumé de l'article de F. Capaccioni et al., The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta, résumé (ici traduit) qui se suffit à lui-même : « L'instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) a pu déterminer [avec les mesures d'albédo (0,06 ± 0,003 à 0,55 µm), les pentes des spectres (de 0,5 à 4 µm) et les bandes d'absorption (de 2,9 à 3,6 µm)] que l'ensemble de la surface éclairée par le Soleil était compatible avec des minéraux opaques (silicates, sulfures ?) associés à des macro-molécules organiques non volatiles. Ce matériel organique semble constitué d'un mélange complexe de molécules présentant des fonctions carbone-hydrogène et carbone-oxygène, avec une petite contribution des fonctions azote-hydrogène. Dans les régions actives, les spectres suggèrent une faible présence de glace d'eau. Aucun secteur riche en glace d'eau n'a été spectralement observé, ce qui indique que la surface est généralement déshydratée ».
Avec ces spectres, ou plutôt avec des images prises avec des filtres dans telle ou telle longueur d'onde, on peut reconstituer les couleurs, en combinant plusieurs images correspondant à différentes longueurs d'onde. La comète 67P/CG est très sombre (albédo de 0,06 à 0.55 µm). Elle paraîtrait noire à un œil humain situé à proximité, ou plutôt gris sombre plus ou moins foncé selon l'éclairement. Dans toutes les photographies publiées, la brillance et les contrastes ont été fortement exagérés. Et comme l'œil humain ne voit pas les couleurs dans les faibles luminosités (« la nuit, tous les chats sont gris » dit le proverbe, et « c'est une histoire de cônes et de bâtonnets » disent les physiologistes de la vision), on peut se demander à quoi rimerait une image couleur. C'est le parti qu'a pris l'équipe d'OSIRIS qui n'avait publié aucune image en couleurs, en disant que de toute façon ça n'apporterait pas grand chose, mais sans trop expliquer pourquoi cela n'apporterait presque rien. Mais on peut toujours se demander quelle serait la couleur de Chury (au sens de ce que verrait un humain) si elle était fortement éclairée, par exemple si elle s'approchait beaucoup du Soleil, ou ce que verrait une chouette, un chat, ou tout autre animal nocturne s'il avait des cônes dans sa rétine. Cela revient à non seulement augmenter brillance et contraste de luminosité, mais aussi à augmenter les contrastes de couleurs. Il n'est pas sûr qu'on ait le droit physique et physiologique de le faire, mais cela "fait plaisir" et cela peut aussi (et surtout) révéler-visualiser-exagérer d'éventuelles subtiles différences de composition chimique. Pour l'instant, je n'ai vu que deux images en couleurs publiées dans des sites "officiels" indiquant bien les filtres utilisés pour reconstituer ces couleurs : la figure qui suit (figure 13) et la figure 25. Cela montre que publier des images en couleurs n'est pas du tout inutile.
Source - © 2015 H. Sierks et al., Science [4]
On peut également étudier la composition de la surface et de la sub-surface depuis Rosetta en orbite autour de la comète en "comptant" et analysant les grains de poussière arrivant sur Rosetta par les instruments GIADA (Grain Impact Analyser and Dust Accumulator) et COSIMA (COmetary Secondary Ion Mass Analyzer). GIADA compte les grains de poussière et mesure leur masse, leur vitesse… COSIMA peut les observer au "microscope" et peut analyser leur composition chimique. L'association des deux mesures devrait permettre, à terme, d'avoir une estimation de la composition chimique moyenne globale de ces poussières, donc de la surface et de la sub-surface dela comète Chury. Pour l'instant quelques images de grains ont été publiées, ainsi qu'une analyse chimique très partielle (cf. COSIMA detects sodium and magnesium in a dust grain called Boris) : un grain de poussière collecté entre le 18 et le 24 août 2014, grain nommé Boris, contient du magnésium et du sodium (en proportion non révélée).
La morphologie et l'activité de la surface de 67P/Churyumov-Gerasimenko
L'article de N. Thomas et al., The morphological diversity of comet 67P/Churyumov-Gerasimenko, entreprend une première classification "morphologique", qualitative et très préliminaire des différents types de terrains visibles sur les quelques dizaines de km2 de la surface de la comète pendant ces deux premiers mois de mission. Les auteurs distinguent entre autres :
- les terrains recouverts de poussière (DCT = Dust-Covered Terrains),
- les terrains "cassants", ou "fracturés" (BM = Brittle Material),
- les dépressions de grande taille (LSDS = Large-Scale Depression Structures),
- les terrains lisses (ST = Smooth Terrains),
- les surfaces consolidées exposées (ECS = Exposed Consolidated Surfaces)...
Les terrains recouverts de poussières (DCT) semblent recouverts d'une couche de poussière (ou de neige noire) d'épaisseur incertaine. La source de ces poussières serait des jets de " vapeur + poussières" éjectées avec une vitesse très faible, plus faible que la vitesse de libération (ou d'échappement). Rappelons que la vitesse de libération peut s'estimer aisément avec la masse et le rayon. Elle vaut environ 1 m/s pour Chury (11 200 m/s pour la Terre).
Les surfaces consolidées exposées (ECS) donnent l'impression d'être des surfaces "rocheuses", parfois affectées de fractures ou de "linéaments". Ces terrains forment de véritables falaises de matériel cométaire consolidé (CCM =Consolidated Cométary Matérial). La plus haute de ces falaises, Hathor, mesure 900 m de haut.
Les terrains lisses (ST) sont lisses comme les terrains recouverts de poussière, mais ce caractère lisse ne semble pas être dû à une couverture de poussière. En particulier, les limites avec les terrains environnant beaucoup moins lisses et faits de matériel cométaire consolidé (CCM) peuvent être très nettes. Parfois les rebords de cette unité qui permet de la voir "en coupe" donne l'impression que cette unité est "litée" (layered, disent les auteurs).
Les matériaux cassant (BM) correspondraient à des terrains relativement consolidés mais plus ou moins intensément fracturés ou constitués d'amoncellements de blocs. Ces terrains remplissent souvent des dépressions à fond plus ou moins plat, interprétées non pas comme des cratères d'impact, mais comme des structures de collapse de vides obtenus par sublimation.
Les dépressions de grande taille (LSDS) seraient de vastes dépressions obtenues par sublimations-collapse. Ces dépressions sont parfois "remplies" de terrains cassants, parfois recouverts de poussières, parfois pleins de terrains lisses. Ce même vocable cache peut-être une grande variété.
De très nombreuses "dépressions" de plus petite taille auraient la même origine. Certaines sont si profondes (relativement à leur diamètre) qu'elles méritent le nom de "puits". Une seule dépression a les caractéristiques d'un cratère d'impact (C, sur la figure 15).
Nous vous montrons trois mosaïques couvrant de vastes portions de la comète et montrant ces différents types de terrains. Ces trois mosaïques proviennent de photographies postérieures à la fin du mois de septembre 2014, et n'ont donc pas été utilisées dans l'article de N. Thomas et al.. La localisation des différents types de terrains qui y est reportée n'est donc qu'une interprétation personnelle.
Source - © 2015 ESA/Rosetta/NavCam - 2di7 & titanio44 sur flickr.com, modifié | Source - © 2015 ESA/Rosetta/NavCam - 2di7 & titanio44 sur flickr.com, modifié |
Source - © 2015 ESA/Rosetta/NavCam, modifié |
Source - © 2015 N. Thomas et al., Science [5], modifié | Source - © 2015 ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA, modifié |
Source - © 2015 N. Thomas et al., Science [5]
N. Thomas et al. [5] et H. Sierks et al.[4] décrivent aussi d'autres éléments morphologiques remarquables et/ou "étranges". Citons en quatre : des surfaces consolidées exposées (ECS) très fracturées (figures 21 et 22), des surfaces consolidées avec une structure « en chair de poule » (figures 23 et 24), des petites "taches" de matériel clair et brillant (de la glace ?) (figure 25), et un "puits" suggérant la sortie d'un jet (figure 26).
Source - © 2015 ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA, modifié | Source - © 2015 ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA, modifié |
Source - © 2015 H. Sierks et al., Science [4] | Source - © 2015 H. Sierks et al., Science [4], modifié |
Source - © 2015 N. Thomas et al., Science [5], modifié | Source - © 2015 H. Sierks et al., Science [4], modifié |
Rappelons que cet article, bien qu'écrit en janvier 2015, a été fait quasiment qu'avec des données des mois d'août et septembre 2014, qu'il n'est qu'un résumé de 8 articles publiés dans Science le 23 janvier 2015, articles écrits par les équipes scientifiques avant la mi-octobre 2014. Il ne reste plus qu'à attendre des nouvelles images et données publiées par l'ESA "au jour le jour" sur son site, et des publications scientifiques de fond utilisant images et données obtenues à partir du début octobre 2014.
Références
K. Altwegg, H. Balsiger, A. Bar-Nun, et 29 co-auteurs, 2015. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio, Science, 347, 6220, 1261952, 1-3
F. Capaccioni, A. Coradini, G. Filacchione, et 75 co-auteurs, 2015. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta, Science, 347, 6220, aaa0628, 1-4
M. Hässig, K. Altwegg, H. Balsiger, et 33 co-auteurs, 2015. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko, Science, 347, 6220, aaa0276, 1-4
Holger Sierks, Cesare Barbieri, Philippe L. Lamy, et 63 co-auteurs, 2015. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko, Science, 347, 6220, aaa1044, 1-5
Nicolas Thomas, Holger Sierks, Cesare Barbieri, et 56 co-auteurs, 2015. The morphological diversity of comet 67P/Churyumov-Gerasimenko, Science, 347, 6220, aaa0440, 1-6