Les sciences de la Terre dans les programmes de terminale S au lycée

Programmes officiels de SVT pour le lycée, classe de terminale S, partie sciences de la Terre

Les programmes de terminale applicable dès septembre 2012 sont parus au Bulletin officiel spécial n° 8 du 13 octobre 2011, dont le programme de SVT pour les terminales S (exemplaire pdf en local).

Seuls les thèmes abordant les sciences de la Terre sont ici développés.

Les hyperliens (termes cliquables) renvoient à des listes de ressources issues de requêtes automatiques. Ces résultats peuvent être élargis ou affinés dans la page du moteur de recherche.

Quelques ressources-clés sont aussi proposées.

Enseignement spécifique

Deux des 3 grands thèmes de l'enseignement spécifique contiennent des concepts de sciences de la Terre et sont présentés ci-dessous.

La Terre dans l'Univers, la vie, l'évolution du vivant

Génétique et évolution

Sur les 5 thèmes, 4 sont axés "génétique" et 1 traite de l'évolution.

Un regard sur l'évolution de l'Homme

Homo sapiens peut être regardé, sur le plan évolutif, comme toute autre espèce. Il a une histoire évolutive et est en perpétuelle évolution. Cette histoire fait partie de celle, plus générale, des primates.

Connaissances

Capacités, attitudes

D'un point de vue génétique, l'Homme et le chimpanzé, très proches, se distinguent surtout par la position et la chronologie d'expression de certains gènes. Le phénotype humain, comme celui des grands singes proches, s'acquiert au cours du développement pré et postnatal, sous l'effet de l'interaction entre l'expression de l'information génétique et l'environnement (dont la relation aux autres individus).

Les premiers primates fossiles datent de - 65 à -50 millions d'années. Ils sont variés et ne sont identiques ni à l'Homme actuel, ni aux autres singes actuels. La diversité des grands primates connue par les fossiles, qui a été grande, est aujourd'hui réduite.

Homme et chimpanzé partagent un ancêtre commun récent. Aucun fossile ne peut être à coup sûr considéré comme un ancêtre de l'homme ou du chimpanzé.

Le genre Homo regroupe l'Homme actuel et quelques fossiles qui se caractérisent notamment par une face réduite, un dimorphisme sexuel peu marqué sur le squelette, un style de bipédie avec trou occipital avancé et aptitude à la course à pied, une mandibule parabolique, etc. Production d'outils complexes et variété des pratiques culturelles sont associées au genre Homo, mais de façon non exclusive. La construction précise de l'arbre phylogénétique du genre Homo est controversée dans le détail.

Comparer les génotypes de différents primates.

Positionner quelques espèces de primates actuels ou fossiles, dans un ancêtre de l'homme, à partir de l'étude de caractères ou de leurs productions.

Objectif. Appliquer au cas Homo sapiens les acquis en matière d'évolution.

(Collège, première : premières idées sur la place de l'Homme dans l'évolution ; pigments rétiniens et place de l'Homme parmi les primates.)

[Limites. L'étude de fossiles n'a aucun objectif exhaustif. Il s'agit simplement d'illustrer la diversité des primates fossiles, notamment de ceux habituellement classés dans le genre Homo. Aucun arbre phylogénétique précis n'est exigible mais comment, en s'appuyant sur tel ou tel caractère, on aborde sa construction. La controverse sur le détail précis de l'arbre est évoquée et illustre une question scientifique en devenir. Cependant, les différentes conceptions en présence ne sont en aucun cas exigibles.]

Convergence. Philosophie : Regards croisés sur l'Homme.

Pistes. Étude comparée des primates ; arts de la préhistoire.

Quelques ressources :

Le domaine continental et sa dynamique

En classe de première S, l'attention s'est portée principalement sur les domaines océaniques. On aborde ici les continents. Il s'agit de dégager les caractéristiques de la lithosphère continentale et d'en comprendre l'évolution à partir de données de terrain.

La compréhension de la dynamique de la lithosphère devient ainsi plus complète.

Bilans : granite, gabbro, basalte, péridotite ; le modèle de la tectonique des plaques ; volcanisme, recyclage des matériaux de la croûte ; notions d'érosion, transport, sédimentation.

La caractérisation du domaine continental : lithosphère continentale, reliefs et épaisseur crustale

La croûte continentale affleure dans les régions émergées. L'examen de données géologiques permet à la fois d'expliquer cette situation et de nuancer cette vision rapide.

Les mécanismes de formation des montagnes sont complexes. On se limite au cas des reliefs liés à un épaississement crustal dont les indices peuvent être retrouvés sur le terrain et/ou en laboratoire.

Connaissances

Capacités, attitudes

La lithosphère est en équilibre (isostasie) sur l'asthénosphère. Les différences d'altitude moyenne entre les continents et les océans s'expliquent par des différences crustales.

La croûte continentale, principalement formée de roches voisines du granite, est d'une épaisseur plus grande et d'une densité plus faible que la croûte océanique.

L'âge de la croûte océanique n'excède pas 200 Ma, alors que la croûte continentale date par endroit de plus de 4 Ga. Cet âge est déterminé par radiochronologie.

Au relief positif qu'est la chaîne de montagnes, répond, en profondeur, une importante racine crustale.

L'épaisseur de la croûte résulte d'un épaississement lié à un raccourcissement et un empilement. On en trouve des indices tectoniques (plis, failles, nappes) et des indices pétrographiques (métamorphisme, traces de fusion partielle).

Les résultats conjugués des études tectoniques et minéralogiques permettent de reconstituer un scénario de l'histoire de la chaîne.

Réaliser et exploiter une modélisation analogique ou numérique pour comprendre la notion d'isostasie.

Utiliser des données sismiques et leur traitement avec des logiciels pour évaluer la profondeur du Moho.

Déterminer un âge en utilisant la méthode de la droite isochrone.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Repérer, à différentes échelles, des indices simples de modifications tectoniques ou pétrographiques du raccourcissement et de l'empilement.

Objectifs et mots-clés. Il s'agit de présenter trois grandes caractéristiques continentales : épaisseur crustale, densité crustale, âges variés et parfois très anciens. La radiochronologie des roches est fondée sur la décroissance radioactive naturelle de certains éléments chimiques présents dans les minéraux qui les constituent. On étudie un exemple d'indice tectonique et un indice pétrographique de raccourcissement.

[Limites. L'interrogation en SVT au baccalauréat ne portera pas sur les formalisations mathématiques et/ou physiques de la radioactivité. L'étude de radiochronologie se limite à un cas : droite isochrone Rb/Sr. Les connaissances pétrographiques se limitent au rappel de ce qui a été vu en classe de première pour le granite. L'étude de la gravimétrie se limite à l'étude d'une modélisation simple de l'isostasie. Il ne s'agit pas d'étudier dans son ensemble le mécanisme orogénique mais seulement de mettre en évidence l'association sur un exemple de phénomènes tectoniques et pétrographiques.]

Convergences. Mathématiques : exponentielles. Physique : radioactivité. Chimie : transformations chimiques, thermodynamique.

Pistes. La transformation chimique en phase solide ; les processus de fusion partielle.

Quelques ressources :

La convergence lithosphérique : contexte de la formation des chaînes de montagnes

Si les dorsales océaniques sont le lieu de la divergence des plaques et les failles transformantes une situation de coulissage, les zones de subductions sont les domaines de la convergence à l'échelle lithosphérique. Ces régions, déjà présentées en classe de première S, sont étudiées ici pour comprendre une situation privilégiée de raccourcissement et d'empilement et donc de formation de chaînes de montagnes.

Connaissances

Capacités, attitudes

Les chaînes de montagnes présentent souvent les traces d'un domaine océanique disparu (ophiolites) et d'anciennes marges continentales passives. La « suture » de matériaux océaniques résulte de l'affrontement de deux lithosphères continentales (collision). Tandis que l'essentiel de la lithosphère continentale continue de subduire, la partie supérieure de la croûte s'épaissit par empilement de nappes dans la zone de contact entre les deux plaques.

Les matériaux océaniques et continentaux montrent les traces d'une transformation minéralogique à grande profondeur au cours de la subduction. La différence de densité entre l'asthénosphère et la lithosphère océanique âgée est la principale cause de la subduction. En s'éloignant de la dorsale, la lithosphère océanique se refroidit et s'épaissit. L'augmentation de sa densité au-delà d'un seuil d'équilibre explique son plongement dans l'asthénosphère. En surface, son âge n'excède pas 200 Ma.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Repérer à différentes échelles, de l'échantillon macroscopique de roche à la lame mince, des minéraux témoignant de transformations liées à la subduction.

Raisonner à l'aide de calculs simples sur le lien entre âge de la lithosphère / densité / subduction.

Objectifs et mots-clés. Subduction, collision. Les indices de subduction ou de collision doivent pouvoir être reconnus sur divers types de documents. La succession est présentée comme un scénario type, jamais parfaitement réalisé sur le terrain. Subsidence thermique. Le rôle moteur de la traction par la lithosphère océanique plongeante complète la compréhension de la tectonique des plaques.

Collège. Collision. Première. Nature pétrographique de la lithosphère océanique.

[Limites. Les exemples relèvent du choix du professeur, aucune chaîne de montagne n'est privilégiée. Aucune connaissance d'ensemble d'une chaîne de montagne précise n'est attendue.]

Convergences. Physique-chimie : diagrammes de phase.

Quelques ressources :

Le magmatisme en zone de subduction : une production de nouveaux matériaux continentaux

Les zones de subduction sont le siège d'une importante activité magmatique qui aboutit à une production de croûte continentale.

Connaissances

Capacités, attitudes

Dans les zones de subduction, des volcans émettent des laves souvent visqueuses associées à des gaz et leurs éruptions sont fréquemment explosives. La déshydratation des matériaux de la croûte océanique subduite libère de l'eau qu'elle a emmagasinée au cours de son histoire, ce qui provoque la fusion partielle des péridotites du manteau sus-jacent.

Si une fraction des magmas arrive en surface (volcanisme), la plus grande partie cristallise en profondeur et donne des roches à structure grenue de type granitoïde. Un magma, d'origine mantellique, aboutit ainsi à la création de nouveau matériau continental.

Observer à différentes échelles, de l'échantillon macroscopique à la lame mince, les roches mises en place dans un cadre de subduction et comprendre les différences de structures et leur particularités minéralogiques (abondance en minéraux hydroxylés).

Réaliser et exploiter les résultats de modélisations numériques de fusion partielle des roches.

Comparer les compositions minéralogiques d'un basalte et d'une andésite.

Objectifs et mots-clés. Accrétion continentale ; granodiorite ; andésite.

(Collège. Dynamisme éruptif. Première. Subduction.)

[Limites. Les mécanismes de la fusion se limitent à la mise en évidence du rôle de "fondant" de l'eau. Les réactions minéralogiques de déshydratation ne sont pas exigibles.]

Pistes. Métamorphisme dans la plaque subduite.

Quelques ressources :

La disparition des reliefs

Tout relief est un système instable qui tend à disparaître aussitôt qu'il se forme. Il ne s'agit évidemment pas ici d'étudier de façon exhaustive les mécanismes de destruction des reliefs et le devenir des matériaux de démantèlement, mais simplement d'introduire l'idée d'un recyclage en replaçant, dans sa globalité, le phénomène sédimentaire dans cet ensemble.

Connaissances

Capacités, attitudes

Les chaînes de montagnes anciennes ont des reliefs moins élevés que les plus récentes. On y observe à l'affleurement une plus forte proportion de matériaux transformés et/ou formés en profondeur. Les parties superficielles des reliefs tendent à disparaître.

Altération et érosion contribuent à l'effacement des reliefs. Les produits de démantèlement sont transportés sous forme solide ou soluble, le plus souvent par l'eau, jusqu'en des lieux plus ou moins éloignés où ils se déposent (sédimentation).

Des phénomènes tectoniques participent aussi à la disparition des reliefs. L'ensemble de ces phénomènes débute dès la naissance du relief et constitue un vaste recyclage de la croûte continentale.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Exploiter des données cartographiques.

Utiliser des images ou des données satellites pour qualifier et éventuellement quantifier l'érosion d'un massif actuel (ordre de grandeur).

Établir un schéma bilan du cycle des matériaux de la croûte continentale.

Objectifs et mots-clés. Il s'agit de montrer que les chaînes de montagnes sont des systèmes dynamiques et disparaissent. Comme les matériaux océaniques, la lithosphère continentale est recyclée en permanence. Les mécanismes sont cependant différents, ce qui explique que la croûte continentale puisse conserver les roches les plus anciennes de la Terre.

(Collège. L'eau, agent principal d'érosion, transport, sédimentation ; sédiments, roches sédimentaires.)

[Limites. Aucun exemple précis n'est imposé par le programme. La diagenèse n'est pas au programme.]

Pistes. Approches quantitatives : flux sédimentaire, réajustements isostatiques, vitesse d'érosion.

Convergences. Géographie : altération-climat.

Quelques ressources :

Enjeux planétaires contemporains

Un thème de sciences de la Terre et un thème de biologie végétale.

Géothermie et propriétés thermiques de la Terre

L'énergie solaire, d'origine externe au globe terrestre, a été largement abordée dans les programmes de sciences de la vie et de la Terre des classes de seconde et de première. Un flux thermique dont l'origine est interne se dirige aussi vers la surface. L'étudier en classe terminale est à la fois prendre conscience d'une ressource énergétique possible et un moyen de comprendre le fonctionnement global de la planète.

Bilan : flux thermique, convection, conduction, énergie géothermique.

Connaissances

Capacités, attitudes

La température croît avec la profondeur (gradient géothermique) ; un flux thermique atteint la surface en provenance des profondeurs de la Terre (flux géothermique). Gradients et flux varient selon le contexte géodynamique.

Le flux thermique a pour origine principale la désintégration des substances radioactives contenues dans les roches.

Deux mécanismes de transfert thermique existent dans la Terre : la convection et la conduction. Le transfert par convection est beaucoup plus efficace.

À l'échelle globale, le flux fort dans les dorsales est associé à la production de lithosphère nouvelle ; au contraire, les zones de subduction présentent un flux faible associé au plongement de la lithosphère âgée devenue dense. La Terre est une machine thermique.

L'énergie géothermique utilisable par l'Homme est variable d'un endroit à l'autre.

Le prélèvement éventuel d'énergie par l'Homme ne représente qu'une infime partie de ce qui est dissipé.

Exploiter des données extraites des atlas régionaux des ressources géothermales en France, concernant la température des fluides extraits dans ces zones.

Exploiter les données recueillies lors d'une sortie locale dans une exploitation géothermique.

Exploiter l'imagerie satellitale et les cartes de répartition mondiale du flux thermique pour replacer les exploitations actuelles dans le cadre structural : magmatisme de rifting, de subduction ou de points chauds.

Réaliser des mesures de conduction et de convection à l'aide d'un dispositif ExAO et les traiter avec un tableur informatique.

Réaliser et exploiter une modélisation analogique de convection en employant éventuellement des matériaux de viscosité différente.

Exploiter les imageries de tomographies sismiques.

Objectifs et mots-clés. Il s'agit de montrer le lien étroit entre la compréhension du fonctionnement de la planète et l'utilisation par l'Homme d'une ressource naturelle que l'on peut considérer inépuisable. La compréhension du transfert thermique dans la Terre permet de compléter le schéma de tectonique globale en y faisant figurer la convection mantellique.

(Collège, seconde, première. Il convient de réinvestir les résultats des classes antérieures pour aboutir à une compréhension très globale du fonctionnement de la planète.)

[Limites. Aucune formalisation mathématique de la circulation du flux thermique n'est attendue.]

Convergences. Physique : transferts thermiques.

Pistes. Approche mathématique du flux thermique, calcul du gradient géothermique.

Quelques ressources :

Enseignement de spécialité

En enseignement de spécialité, un thème propose des compléments portant sur les sciences de la Terre.

Enjeux planétaires contemporains

Atmosphère, hydrosphère, climats : du passé à l'avenir

Les enveloppes fluides de la Terre (atmosphère et hydrosphère) sont le siège d'une dynamique liée notamment à l'énergie reçue du Soleil. Elles sont en interaction permanente avec la biosphère et la géosphère. Le climat, à l'échelle globale ou locale, est à la fois le résultat de ces interactions et la condition de leur déroulement. La compréhension, au moins partielle, de cette complexité permet d'envisager une gestion raisonnée de l'influence de l'Homme. Sans chercher l'exhaustivité, l'objectif de ce thème est d'aborder quelques aspects de la relation entre histoire des enveloppes fluides de la Terre et histoire du climat.

  • L'atmosphère initiale de la Terre était différente de l'atmosphère actuelle. Sa transformation est la conséquence, notamment, du développement de la vie. L'histoire de cette transformation se trouve inscrite dans les roches, en particulier celles qui sont sédimentaires.

    [Il s'agit de traiter le passage de l'atmosphère primitive à l'atmosphère oxydante en s'appuyant sur un nombre limité d'arguments pétrographiques.]

  • Les bulles d'air contenues dans les glaces permettent d'étudier la composition de l'air durant les 800.000 dernières années y compris des polluants d'origine humaine. La composition isotopique des glaces et d'autres indices (par exemple la palynologie) permettent de retracer les évolutions climatiques de cette période.

    [Les élèves doivent connaître les apports essentiels de la glaciologie. Aucun autre argument n'est exigible, mais les élèves devront pouvoir étudier des documents permettant de les mettre en évidence.]

  • L'effet de serre, déterminé notamment par la composition atmosphérique, est un facteur influençant le climat global. La modélisation de la relation effet de serre/climat est complexe. Elle permet de proposer des hypothèses d'évolutions possibles du climat de la planète notamment en fonction des émissions de gaz à effet de serre induites par l'activité humaine.

    [L'ensemble des mécanismes agissant sur le climat n'est pas au programme, mais on indiquera que l'effet de serre n'est qu'un facteur parmi d'autres. En particulier, l'influence des paramètres astronomiques pourra être évoquée, mais n'est pas exigible des élèves au baccalauréat.]

  • Sur les grandes durées (par exemple pendant le dernier milliard d'années), les traces de variations climatiques importantes sont enregistrées dans les roches sédimentaires. Des conditions climatiques très éloignées de celles de l'époque actuelle ont existé.

    [On étudie seulement un exemple permettant de reconstituer les conditions climatiques et leur explication en termes de géodynamique. L'histoire de la variation du climat en elle-même est hors programme ainsi que l'étude exhaustive des relations entre géodynamique et climat.]

Quelques ressources :

Programme de terminale S, enseignement spécifique et de spécialité en sciences de la Terre


Les programmes de terminale applicable dès septembre 2012 sont parus au Bulletin officiel spécial n° 8 du 13 octobre 2011, dont le programme de SVT pour les terminales S (exemplaire pdf en local).

Seuls les thèmes abordant les sciences de la Terre sont ici développés.

Les hyperliens (termes cliquables) renvoient à des listes de ressources issues de requêtes automatiques. Ces résultats peuvent être élargis ou affinés dans la page du moteur de recherche.

Quelques ressources-clés sont aussi proposées.

Enseignement spécifique

Deux des 3 grands thèmes de l'enseignement spécifique contiennent des concepts de sciences de la Terre et sont présentés ci-dessous.

La Terre dans l'Univers, la vie, l'évolution du vivant

Génétique et évolution

Sur les 5 thèmes, 4 sont axés "génétique" et 1 traite de l'évolution.

Un regard sur l'évolution de l'Homme

Homo sapiens peut être regardé, sur le plan évolutif, comme toute autre espèce. Il a une histoire évolutive et est en perpétuelle évolution. Cette histoire fait partie de celle, plus générale, des primates.

Connaissances

Capacités, attitudes

D'un point de vue génétique, l'Homme et le chimpanzé, très proches, se distinguent surtout par la position et la chronologie d'expression de certains gènes. Le phénotype humain, comme celui des grands singes proches, s'acquiert au cours du développement pré et postnatal, sous l'effet de l'interaction entre l'expression de l'information génétique et l'environnement (dont la relation aux autres individus).

Les premiers primates fossiles datent de - 65 à -50 millions d'années. Ils sont variés et ne sont identiques ni à l'Homme actuel, ni aux autres singes actuels. La diversité des grands primates connue par les fossiles, qui a été grande, est aujourd'hui réduite.

Homme et chimpanzé partagent un ancêtre commun récent. Aucun fossile ne peut être à coup sûr considéré comme un ancêtre de l'homme ou du chimpanzé.

Le genre Homo regroupe l'Homme actuel et quelques fossiles qui se caractérisent notamment par une face réduite, un dimorphisme sexuel peu marqué sur le squelette, un style de bipédie avec trou occipital avancé et aptitude à la course à pied, une mandibule parabolique, etc. Production d'outils complexes et variété des pratiques culturelles sont associées au genre Homo, mais de façon non exclusive. La construction précise de l'arbre phylogénétique du genre Homo est controversée dans le détail.

Comparer les génotypes de différents primates.

Positionner quelques espèces de primates actuels ou fossiles, dans un ancêtre de l'homme, à partir de l'étude de caractères ou de leurs productions.

Objectif. Appliquer au cas Homo sapiens les acquis en matière d'évolution.

(Collège, première : premières idées sur la place de l'Homme dans l'évolution ; pigments rétiniens et place de l'Homme parmi les primates.)

[Limites. L'étude de fossiles n'a aucun objectif exhaustif. Il s'agit simplement d'illustrer la diversité des primates fossiles, notamment de ceux habituellement classés dans le genre Homo. Aucun arbre phylogénétique précis n'est exigible mais comment, en s'appuyant sur tel ou tel caractère, on aborde sa construction. La controverse sur le détail précis de l'arbre est évoquée et illustre une question scientifique en devenir. Cependant, les différentes conceptions en présence ne sont en aucun cas exigibles.]

Convergence. Philosophie : Regards croisés sur l'Homme.

Pistes. Étude comparée des primates ; arts de la préhistoire.

Quelques ressources :

Le domaine continental et sa dynamique

En classe de première S, l'attention s'est portée principalement sur les domaines océaniques. On aborde ici les continents. Il s'agit de dégager les caractéristiques de la lithosphère continentale et d'en comprendre l'évolution à partir de données de terrain.

La compréhension de la dynamique de la lithosphère devient ainsi plus complète.

Bilans : granite, gabbro, basalte, péridotite ; le modèle de la tectonique des plaques ; volcanisme, recyclage des matériaux de la croûte ; notions d'érosion, transport, sédimentation.

La caractérisation du domaine continental : lithosphère continentale, reliefs et épaisseur crustale

La croûte continentale affleure dans les régions émergées. L'examen de données géologiques permet à la fois d'expliquer cette situation et de nuancer cette vision rapide.

Les mécanismes de formation des montagnes sont complexes. On se limite au cas des reliefs liés à un épaississement crustal dont les indices peuvent être retrouvés sur le terrain et/ou en laboratoire.

Connaissances

Capacités, attitudes

La lithosphère est en équilibre (isostasie) sur l'asthénosphère. Les différences d'altitude moyenne entre les continents et les océans s'expliquent par des différences crustales.

La croûte continentale, principalement formée de roches voisines du granite, est d'une épaisseur plus grande et d'une densité plus faible que la croûte océanique.

L'âge de la croûte océanique n'excède pas 200 Ma, alors que la croûte continentale date par endroit de plus de 4 Ga. Cet âge est déterminé par radiochronologie.

Au relief positif qu'est la chaîne de montagnes, répond, en profondeur, une importante racine crustale.

L'épaisseur de la croûte résulte d'un épaississement lié à un raccourcissement et un empilement. On en trouve des indices tectoniques (plis, failles, nappes) et des indices pétrographiques (métamorphisme, traces de fusion partielle).

Les résultats conjugués des études tectoniques et minéralogiques permettent de reconstituer un scénario de l'histoire de la chaîne.

Réaliser et exploiter une modélisation analogique ou numérique pour comprendre la notion d'isostasie.

Utiliser des données sismiques et leur traitement avec des logiciels pour évaluer la profondeur du Moho.

Déterminer un âge en utilisant la méthode de la droite isochrone.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Repérer, à différentes échelles, des indices simples de modifications tectoniques ou pétrographiques du raccourcissement et de l'empilement.

Objectifs et mots-clés. Il s'agit de présenter trois grandes caractéristiques continentales : épaisseur crustale, densité crustale, âges variés et parfois très anciens. La radiochronologie des roches est fondée sur la décroissance radioactive naturelle de certains éléments chimiques présents dans les minéraux qui les constituent. On étudie un exemple d'indice tectonique et un indice pétrographique de raccourcissement.

[Limites. L'interrogation en SVT au baccalauréat ne portera pas sur les formalisations mathématiques et/ou physiques de la radioactivité. L'étude de radiochronologie se limite à un cas : droite isochrone Rb/Sr. Les connaissances pétrographiques se limitent au rappel de ce qui a été vu en classe de première pour le granite. L'étude de la gravimétrie se limite à l'étude d'une modélisation simple de l'isostasie. Il ne s'agit pas d'étudier dans son ensemble le mécanisme orogénique mais seulement de mettre en évidence l'association sur un exemple de phénomènes tectoniques et pétrographiques.]

Convergences. Mathématiques : exponentielles. Physique : radioactivité. Chimie : transformations chimiques, thermodynamique.

Pistes. La transformation chimique en phase solide ; les processus de fusion partielle.

Quelques ressources :

La convergence lithosphérique : contexte de la formation des chaînes de montagnes

Si les dorsales océaniques sont le lieu de la divergence des plaques et les failles transformantes une situation de coulissage, les zones de subductions sont les domaines de la convergence à l'échelle lithosphérique. Ces régions, déjà présentées en classe de première S, sont étudiées ici pour comprendre une situation privilégiée de raccourcissement et d'empilement et donc de formation de chaînes de montagnes.

Connaissances

Capacités, attitudes

Les chaînes de montagnes présentent souvent les traces d'un domaine océanique disparu (ophiolites) et d'anciennes marges continentales passives. La « suture » de matériaux océaniques résulte de l'affrontement de deux lithosphères continentales (collision). Tandis que l'essentiel de la lithosphère continentale continue de subduire, la partie supérieure de la croûte s'épaissit par empilement de nappes dans la zone de contact entre les deux plaques.

Les matériaux océaniques et continentaux montrent les traces d'une transformation minéralogique à grande profondeur au cours de la subduction. La différence de densité entre l'asthénosphère et la lithosphère océanique âgée est la principale cause de la subduction. En s'éloignant de la dorsale, la lithosphère océanique se refroidit et s'épaissit. L'augmentation de sa densité au-delà d'un seuil d'équilibre explique son plongement dans l'asthénosphère. En surface, son âge n'excède pas 200 Ma.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Repérer à différentes échelles, de l'échantillon macroscopique de roche à la lame mince, des minéraux témoignant de transformations liées à la subduction.

Raisonner à l'aide de calculs simples sur le lien entre âge de la lithosphère / densité / subduction.

Objectifs et mots-clés. Subduction, collision. Les indices de subduction ou de collision doivent pouvoir être reconnus sur divers types de documents. La succession est présentée comme un scénario type, jamais parfaitement réalisé sur le terrain. Subsidence thermique. Le rôle moteur de la traction par la lithosphère océanique plongeante complète la compréhension de la tectonique des plaques.

Collège. Collision. Première. Nature pétrographique de la lithosphère océanique.

[Limites. Les exemples relèvent du choix du professeur, aucune chaîne de montagne n'est privilégiée. Aucune connaissance d'ensemble d'une chaîne de montagne précise n'est attendue.]

Convergences. Physique-chimie : diagrammes de phase.

Quelques ressources :

Le magmatisme en zone de subduction : une production de nouveaux matériaux continentaux

Les zones de subduction sont le siège d'une importante activité magmatique qui aboutit à une production de croûte continentale.

Connaissances

Capacités, attitudes

Dans les zones de subduction, des volcans émettent des laves souvent visqueuses associées à des gaz et leurs éruptions sont fréquemment explosives. La déshydratation des matériaux de la croûte océanique subduite libère de l'eau qu'elle a emmagasinée au cours de son histoire, ce qui provoque la fusion partielle des péridotites du manteau sus-jacent.

Si une fraction des magmas arrive en surface (volcanisme), la plus grande partie cristallise en profondeur et donne des roches à structure grenue de type granitoïde. Un magma, d'origine mantellique, aboutit ainsi à la création de nouveau matériau continental.

Observer à différentes échelles, de l'échantillon macroscopique à la lame mince, les roches mises en place dans un cadre de subduction et comprendre les différences de structures et leur particularités minéralogiques (abondance en minéraux hydroxylés).

Réaliser et exploiter les résultats de modélisations numériques de fusion partielle des roches.

Comparer les compositions minéralogiques d'un basalte et d'une andésite.

Objectifs et mots-clés. Accrétion continentale ; granodiorite ; andésite.

(Collège. Dynamisme éruptif. Première. Subduction.)

[Limites. Les mécanismes de la fusion se limitent à la mise en évidence du rôle de "fondant" de l'eau. Les réactions minéralogiques de déshydratation ne sont pas exigibles.]

Pistes. Métamorphisme dans la plaque subduite.

Quelques ressources :

La disparition des reliefs

Tout relief est un système instable qui tend à disparaître aussitôt qu'il se forme. Il ne s'agit évidemment pas ici d'étudier de façon exhaustive les mécanismes de destruction des reliefs et le devenir des matériaux de démantèlement, mais simplement d'introduire l'idée d'un recyclage en replaçant, dans sa globalité, le phénomène sédimentaire dans cet ensemble.

Connaissances

Capacités, attitudes

Les chaînes de montagnes anciennes ont des reliefs moins élevés que les plus récentes. On y observe à l'affleurement une plus forte proportion de matériaux transformés et/ou formés en profondeur. Les parties superficielles des reliefs tendent à disparaître.

Altération et érosion contribuent à l'effacement des reliefs. Les produits de démantèlement sont transportés sous forme solide ou soluble, le plus souvent par l'eau, jusqu'en des lieux plus ou moins éloignés où ils se déposent (sédimentation).

Des phénomènes tectoniques participent aussi à la disparition des reliefs. L'ensemble de ces phénomènes débute dès la naissance du relief et constitue un vaste recyclage de la croûte continentale.

Recenser, extraire et organiser des données de terrain entre autres lors d'une sortie.

Exploiter des données cartographiques.

Utiliser des images ou des données satellites pour qualifier et éventuellement quantifier l'érosion d'un massif actuel (ordre de grandeur).

Établir un schéma bilan du cycle des matériaux de la croûte continentale.

Objectifs et mots-clés. Il s'agit de montrer que les chaînes de montagnes sont des systèmes dynamiques et disparaissent. Comme les matériaux océaniques, la lithosphère continentale est recyclée en permanence. Les mécanismes sont cependant différents, ce qui explique que la croûte continentale puisse conserver les roches les plus anciennes de la Terre.

(Collège. L'eau, agent principal d'érosion, transport, sédimentation ; sédiments, roches sédimentaires.)

[Limites. Aucun exemple précis n'est imposé par le programme. La diagenèse n'est pas au programme.]

Pistes. Approches quantitatives : flux sédimentaire, réajustements isostatiques, vitesse d'érosion.

Convergences. Géographie : altération-climat.

Quelques ressources :

Enjeux planétaires contemporains

Un thème de sciences de la Terre et un thème de biologie végétale.

Géothermie et propriétés thermiques de la Terre

L'énergie solaire, d'origine externe au globe terrestre, a été largement abordée dans les programmes de sciences de la vie et de la Terre des classes de seconde et de première. Un flux thermique dont l'origine est interne se dirige aussi vers la surface. L'étudier en classe terminale est à la fois prendre conscience d'une ressource énergétique possible et un moyen de comprendre le fonctionnement global de la planète.

Bilan : flux thermique, convection, conduction, énergie géothermique.

Connaissances

Capacités, attitudes

La température croît avec la profondeur (gradient géothermique) ; un flux thermique atteint la surface en provenance des profondeurs de la Terre (flux géothermique). Gradients et flux varient selon le contexte géodynamique.

Le flux thermique a pour origine principale la désintégration des substances radioactives contenues dans les roches.

Deux mécanismes de transfert thermique existent dans la Terre : la convection et la conduction. Le transfert par convection est beaucoup plus efficace.

À l'échelle globale, le flux fort dans les dorsales est associé à la production de lithosphère nouvelle ; au contraire, les zones de subduction présentent un flux faible associé au plongement de la lithosphère âgée devenue dense. La Terre est une machine thermique.

L'énergie géothermique utilisable par l'Homme est variable d'un endroit à l'autre.

Le prélèvement éventuel d'énergie par l'Homme ne représente qu'une infime partie de ce qui est dissipé.

Exploiter des données extraites des atlas régionaux des ressources géothermales en France, concernant la température des fluides extraits dans ces zones.

Exploiter les données recueillies lors d'une sortie locale dans une exploitation géothermique.

Exploiter l'imagerie satellitale et les cartes de répartition mondiale du flux thermique pour replacer les exploitations actuelles dans le cadre structural : magmatisme de rifting, de subduction ou de points chauds.

Réaliser des mesures de conduction et de convection à l'aide d'un dispositif ExAO et les traiter avec un tableur informatique.

Réaliser et exploiter une modélisation analogique de convection en employant éventuellement des matériaux de viscosité différente.

Exploiter les imageries de tomographies sismiques.

Objectifs et mots-clés. Il s'agit de montrer le lien étroit entre la compréhension du fonctionnement de la planète et l'utilisation par l'Homme d'une ressource naturelle que l'on peut considérer inépuisable. La compréhension du transfert thermique dans la Terre permet de compléter le schéma de tectonique globale en y faisant figurer la convection mantellique.

(Collège, seconde, première. Il convient de réinvestir les résultats des classes antérieures pour aboutir à une compréhension très globale du fonctionnement de la planète.)

[Limites. Aucune formalisation mathématique de la circulation du flux thermique n'est attendue.]

Convergences. Physique : transferts thermiques.

Pistes. Approche mathématique du flux thermique, calcul du gradient géothermique.

Quelques ressources :

Enseignement de spécialité

En enseignement de spécialité, un thème propose des compléments portant sur les sciences de la Terre.

Enjeux planétaires contemporains

Atmosphère, hydrosphère, climats : du passé à l'avenir

Les enveloppes fluides de la Terre (atmosphère et hydrosphère) sont le siège d'une dynamique liée notamment à l'énergie reçue du Soleil. Elles sont en interaction permanente avec la biosphère et la géosphère. Le climat, à l'échelle globale ou locale, est à la fois le résultat de ces interactions et la condition de leur déroulement. La compréhension, au moins partielle, de cette complexité permet d'envisager une gestion raisonnée de l'influence de l'Homme. Sans chercher l'exhaustivité, l'objectif de ce thème est d'aborder quelques aspects de la relation entre histoire des enveloppes fluides de la Terre et histoire du climat.

  • L'atmosphère initiale de la Terre était différente de l'atmosphère actuelle. Sa transformation est la conséquence, notamment, du développement de la vie. L'histoire de cette transformation se trouve inscrite dans les roches, en particulier celles qui sont sédimentaires.

    [Il s'agit de traiter le passage de l'atmosphère primitive à l'atmosphère oxydante en s'appuyant sur un nombre limité d'arguments pétrographiques.]

  • Les bulles d'air contenues dans les glaces permettent d'étudier la composition de l'air durant les 800.000 dernières années y compris des polluants d'origine humaine. La composition isotopique des glaces et d'autres indices (par exemple la palynologie) permettent de retracer les évolutions climatiques de cette période.

    [Les élèves doivent connaître les apports essentiels de la glaciologie. Aucun autre argument n'est exigible, mais les élèves devront pouvoir étudier des documents permettant de les mettre en évidence.]

  • L'effet de serre, déterminé notamment par la composition atmosphérique, est un facteur influençant le climat global. La modélisation de la relation effet de serre/climat est complexe. Elle permet de proposer des hypothèses d'évolutions possibles du climat de la planète notamment en fonction des émissions de gaz à effet de serre induites par l'activité humaine.

    [L'ensemble des mécanismes agissant sur le climat n'est pas au programme, mais on indiquera que l'effet de serre n'est qu'un facteur parmi d'autres. En particulier, l'influence des paramètres astronomiques pourra être évoquée, mais n'est pas exigible des élèves au baccalauréat.]

  • Sur les grandes durées (par exemple pendant le dernier milliard d'années), les traces de variations climatiques importantes sont enregistrées dans les roches sédimentaires. Des conditions climatiques très éloignées de celles de l'époque actuelle ont existé.

    [On étudie seulement un exemple permettant de reconstituer les conditions climatiques et leur explication en termes de géodynamique. L'histoire de la variation du climat en elle-même est hors programme ainsi que l'étude exhaustive des relations entre géodynamique et climat.]

Quelques ressources :