Les résultats du bilan 2007 du GIEC
Bases Physiques Projections

Pascale DELECLUSE – CNRM/Météo-France

Formatterre Lyon
26 octobre 2007
Le Groupe Intergouvernemental d’experts sur l’Evolution du Climat (GIEC)

 - évalue l’information scientifique et socio-économique sur le changement climatique, ses impacts et les différentes options pour l’atténuer ou s’y adapter ;
 - émet des avis pour la Conférence des Parties à la Convention Cadre des Nations Unies sur le Changement Climatique (1992)
- AR4 : 3 volets (janvier, avril, mai) et une synthèse attendue (Valence, nov. 2007)
 - les bases scientifiques du changement climatique,
 - les impacts, l’adaptation et la vulnérabilité,
 - l’atténuation.
- Une assise scientifique (plus de 600 auteurs pour volet 1)
 - un mécanisme de révision (plus de 600 réviseurs),
 - un effort particulier de sémantique, de précision logique,
 - un message apolitique (mais des jeux diplomatiques).
- 6 ans de nouvelles recherches depuis le rapport précédent
- Un très large consensus d’une communauté scientifique
1. Le constat
2. La physique
3. La détection
4. L’attribution

- Le réchauffement du système climatique est sans équivoque
- L’essentiel de l’accroissement observé sur la température moyenne globale depuis le milieu du 20e siècle est très probablement dû à l’augmentation observée des concentrations des gaz à effet de serre d’origine humaine (GIEC 2007)

5. Les scenarios
6. Les projections
Causes possibles du réchauffement terrestre

- Variations de l’orbite terrestre : répartition différente de l’énergie venue du soleil à la surface de la Terre
- Variation de la quantité d’énergie venue du soleil
- Volcanisme et poussières
- Variation de la composition chimique de l’atmosphère : impact radiatif des gaz à effet de serre
Le climat de la Terre est loin d’être stable

Dernier maximum glaciaire
20°C

Période chaude précédente
« Eemien » : +5°C

Evénements de
« Dansgaard-Oeschger »
10 à 16°C

NorthGRIP, Nature, 2004
Reconstructions paléoclimatiques
Carottages glaciaires

Il y a 125 000 ans, dernière grande période chaude polaire, la réduction du volume des glaces polaires a conduit à une élévation du niveau des mers de 4 à 6 m.

Quaternaire
Cycles de Milankovich

Glaciaire
Variabilité rapide
Energie solaire : stabilité depuis 50 ans

Changement impliqué en terme de température

Source: Lean, 2003
Emission de poussières volcaniques

Source: Sato et al, GISS, NASA
Les concentrations mondiales actuelles de dioxyde de carbone, de méthane et de protoxyde d’azote ont cru de façon notable par suite des activités humaines depuis 1750 et maintenant dépassent largement les valeurs préindustrielles déterminées à partir des carottes de glace couvrant plusieurs milliers d’années. Les augmentations du dioxyde de carbone sont principalement dues à l’utilisation des combustibles fossiles et au changement d’utilisation des terres, tandis que ceux du méthane et du protoxyde d’azote sont principalement dus à l’agriculture.
Certitude et incertitude

- Démarche scientifique
 - Mise en évidence d’un phénomène particulier dans les observations
 - Proposition de mécanisme pour interpréter les observations
 - Validation de ce mécanisme par confrontation avec d’autres données, et par expérimentation physique ou numérique
 - Revue critique par des experts indépendants

- Le climat est particulièrement difficile
 - Observations insuffisantes ou biaisées
 - Multiples facteurs intervenant dans sa variabilité
 - Expérimentation laboratoire impraticable => numérique
 - Besoin de mettre en place en place une large démarche consensuelle
Mettre le monde dans un ordinateur

Modèle physique
- choix du modèle, hypothèses simplifica
- mise en équations

Modèle informatique
- Discrétisation des équations, schémas
- codage

<table>
<thead>
<tr>
<th>Ex: IPSL-CM4</th>
<th>Nbre lignes total</th>
<th>Nbre de lignes utiles</th>
<th>Nbre de routines</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA (océan)</td>
<td>71101</td>
<td>30943</td>
<td>233</td>
</tr>
<tr>
<td>LIM (glace de mer)</td>
<td>8202</td>
<td>5456</td>
<td>33</td>
</tr>
<tr>
<td>LMDZ (atmosphère)</td>
<td>63514</td>
<td>45955</td>
<td>320</td>
</tr>
<tr>
<td>ORCHIDEE (surface continentale)</td>
<td>30940</td>
<td>21370</td>
<td>174</td>
</tr>
<tr>
<td>IOIPSL (gestion I/O)</td>
<td>14744</td>
<td>9646</td>
<td>103</td>
</tr>
<tr>
<td>OASIS (coupure)</td>
<td>26368</td>
<td>14165</td>
<td>176</td>
</tr>
<tr>
<td>TOTAL</td>
<td>217169</td>
<td>130559</td>
<td>1049</td>
</tr>
</tbody>
</table>
Modèle : mettre le système Terre en boîte

- Données Gaz à effet de serre
- Chimie de l’ozone MOBIDIC
- Météo Moyennes
- Atmosphère ARPEGE-Climat (coopération CEPMMT)
- Surfaces continentales ISBA
- Glace de mer
- Océan OPA
- Routage des Fleuves TRIP*

*Université de Tokyo
Des jeux de simulation numérique

Conditions Initiales
Température
Vapeur eau / salinité
Vents / courants
en tout point

Modèle

Résultats
Température
Vapeur eau / salinité
Vents / courants
en tout point
Au cours du temps

Conditions aux limites
Insolation
Gaz à effet de serre

Simulation de référence
Simulation perturbée (conditions aux limites)
La poursuite des émissions de gaz à effet de serre au niveau actuel ou au-dessus provoquerait un réchauffement supplémentaire et induirait de nombreux changements dans le système climatique global au long du 21e siècle, qui seraient \textit{très vraisemblablement} plus importants que ce qui a été observé au cours du 20e siècle.
Anomalies de température et de précipitation
Fin du 21e siècle – scénario A2
Situons ces modifications...

Evolution des extrêmes - aléas, vulnérabilités, risques ?

Température moyenne d’été
Observations et scénario A2

Anomalie 3,7°C 2003
Résultats des projections et analyses des incertitudes

- Les scénarios socio-économiques
- La physique de l’atmosphère
- Les interactions chimie-climat
- Océan : stabilité de la circulation, écosystèmes océaniques, acidification
- Variabilité naturelle
Projections : les scénarios d’émissions
Bases socio-économiques, développement, géopolitique

<table>
<thead>
<tr>
<th>Scénario</th>
<th>Population</th>
<th>Economique</th>
<th>Insectes</th>
<th>Équité</th>
<th>Technologie</th>
<th>Mondial</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1FI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economique +
A1 + A2
Mondial +
B1 + B2
Régional +
Environnemental +

Concentration CO2 (ppm)

2000 2020 2040 2060 2080 2100
Des scénarios marqueurs du GIEC ...
... aux projections climatiques globales

![Graph showing CO2 concentration and global surface warming](chart.png)
Projections en température

B1: 2011-2030
A1B: 2011-2030
A2: 2011-2030

B1: 2046-2065
A1B: 2046-2065
A2: 2046-2065

B1: 2080-2099
A1B: 2080-2099
A2: 2080-2099

°C

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
Une estimation qui dépend du champ
Une régression marquée de la banquise

a) 1980-2000 average
b) 2080-2100 average
Des contrastes plus forts en précipitations
Les nuages

Nuages hauts : Cirrus
Glace - transparent

Nuages bas : Stratus
1 jour - w= 1 cm/s

Convection profonde
Mn/heure - w= qq m/s
Opaque

Forçage radiatif des nuages : $F_N = 2 - 1$
1- Réflexion du rayonnement solaire (Albedo croît)
 → Refroidissement
2- Absorption et réémission des émissions onde longue
 (effet de serre augmenté) -> Rêchauffement
Changement relatif de précipitation 2090-2099 par rapport à 1980-1999

GIEC AR4, 2007
Interactions complexes :
forçage et rétroaction

- Couplage de systèmes de nature et/ou d'échelles différentes :
 Ex : dynamique et physique (climat) et cycles biogéochimiques

- Amplification ou réduction des perturbations
- Effets de seuil, instabilités
Des aérosols aux propriétés diverses

Distribution globale moyenne des aérosols en mars 1997 d’après les observations de Polder et principales campagnes dédiées à l’étude des aérosols (propriété et effet radiatif) depuis une dizaine d’années. L’indice aérosol est principalement sensible aux aérosols carbonés.

Radiative Forcing Components

<table>
<thead>
<tr>
<th>RF Terms</th>
<th>RF values (W m⁻²)</th>
<th>Spatial scale</th>
<th>LOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long lived greenhouse gases</td>
<td>-1.56 (1.14 to 1.89)</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.48 (0.43 to 0.55)</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.18 (0.14 to 0.19)</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Halocarbons</td>
<td>0.34 (0.31 to 0.37)</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Ozone</td>
<td>-0.06 [-0.16 to 0.06]</td>
<td>Continental</td>
<td>Med</td>
</tr>
<tr>
<td>Stratospheric Ozone</td>
<td>0.35 (0.26 to 0.68)</td>
<td>Continental</td>
<td>Med</td>
</tr>
<tr>
<td>Tropospheric Ozone</td>
<td>0.07 (0.02 to 0.12)</td>
<td>Global</td>
<td>Low</td>
</tr>
<tr>
<td>Surface absorption</td>
<td>-0.2 [-0.4 to 0.0]</td>
<td>Local to continental</td>
<td>Med - Low</td>
</tr>
<tr>
<td>Land use</td>
<td>0.1 [0.0 to 0.2]</td>
<td>Local to continental</td>
<td>Med - Low</td>
</tr>
<tr>
<td>Total aerosol</td>
<td>-0.5 [-0.9 to -0.1]</td>
<td>Continental</td>
<td>Med - Low</td>
</tr>
<tr>
<td>Cloud albedo effect</td>
<td>-0.7 [-1.5 to -0.3]</td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Linear controls</td>
<td>0.01 (0.003 to 0.03)</td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Solar irradiance</td>
<td>0.12 (0.06 to 0.30)</td>
<td>Global</td>
<td>Low</td>
</tr>
<tr>
<td>Total net anthropogenic</td>
<td>1.6 (0.6 to 2.4)</td>
<td>Global</td>
<td>Low</td>
</tr>
</tbody>
</table>
Aérosols

Modification de l'albedo et de la durée de vie des nuages

Absorption-diffusion du rayonnement
-réchauffement si carbone-suie dans nuages
-refroidissement si carbone-suie au dessus des nuages
Le bilan global du CO2 anthropique en GtC par an

Emissions

Accumulation atmosphère

Flux air-mer

-1.7 ± 0.5

Flux air-continent

-4.6 à -1.3

-1.4 ± 0.7

0.6 à 2.5

(1 GtC = 10^{15} gC)

Flux annuels années 1990

Source : GIEC-TAR
Cycle du carbone

Atmosphère 730 accumulation

Combustion
- CO2 (3.5)
- CO (0.5)
- Aérosols (<0.1)

Photosynthèse 120
Respiration 60
Plantes
Respiration 65
sols

Fluxes air-mer 90

Puits bio

Végétation (600)

Déforestation

Carbone sol (1600)

Fluxes air-mer 90

Puits océan

Emissions

Océan (39 000)

DOC export 0.4

Charcoal formation <0.1

(1 GtC = 10^{15} gC)
Simulation climat-carbone

![Diagram showing climate-carbon interactions](image)
Résultats de la simulation de l’IPSL

Rétroaction positive
Impact du climat sur le cycle du carbone

Réduction

C'est la biosphère!

Friedlingstein et al., 2004
Le climat en 2090 - 2001/ climat actuel

Scenario IPCC
Couplage entre le Climat et le Cycle du Carbone

Rechauffement (°C)

Impact du Climat sur les Puits de Carbone (gC/m²/an)
Des incertitudes sur l’avenir de l’océan

- Le niveau de la mer
- L’équilibre de la circulation générale
- L’avenir des écosystèmes marins
Causes des variations du niveau de la mer

- Déformation de la croûte terrestre et rebond post glaciaire
- Variations de température et de salinité de l’eau de mer : dilatation thermique
- Ajustement dynamique de la surface marine
- Echange d’eau entre les océans et les réservoirs continentaux, les glaciers et les calottes polaires
Niveau de la mer, expansion et apports d'eau
Des marégraphes à l'altimétrie spatiale

Tendances en augmentation
1900-2000 : **1,7 ± 0,5** mm/an
1961-2003 : **1,8 ± 0,5**
1993-2003 : **3,1 ± 0,7** (31 cm/siècle)

Cabannes et al. 2006, LEGOS
Contributions au niveau de la mer

En bleu : taux estimé sur 1961-2003
En brun : taux estimé sur 1993-2003

GIEC AR4, 2007
Projections : La hausse du niveau de la mer

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meilleure estimation</td>
<td>Plage de vraisemblance</td>
</tr>
<tr>
<td>Concentration constante au niveau de l’année 2000</td>
<td>0,6</td>
</tr>
<tr>
<td>Scénario B1</td>
<td>1,8</td>
</tr>
<tr>
<td>Scénario A1T</td>
<td>2,4</td>
</tr>
<tr>
<td>Scénario B2</td>
<td>2,4</td>
</tr>
<tr>
<td>Scénario A1B</td>
<td>2,8</td>
</tr>
<tr>
<td>Scénario A2</td>
<td>3,4</td>
</tr>
<tr>
<td>Scénario A1FI</td>
<td>4,0</td>
</tr>
</tbody>
</table>

(GIEC, 2007)

- Hausse du niveau des mers
- Changement de trajectoires des cyclones
- Mesures de lutte contre l’érosion côtière notamment sur la façade Atlantique
- Limiter la vulnérabilité
Des fontes de calotte contrastées

D’après Cazenave et al., 2006
Niveau de la mer et circulation
Circulation de surface et de subsurface
Dans les mers subarctiques
Projections: Des conséquences à peine entrevues
Une circulation océanique modifiée

Intensité de la circulation, « thermohaline »
En Sv (millions de m³/s)

Avec - Sans Fonte des calottes, dans 4 à 5 siècles
Swingedouw et al., 2006
Productivité océanique : climat du futur

production exportée : $2 \times CO_2 - 1 \times CO_2$ (gC m$^{-2}$ an$^{-1}$)

- Diminution globale -5 à -10 %
- Opposition entre basses latitudes (-20%) / hautes latitudes (+20%)
- Mécanisme : Stratification

 Nutritifs de surface

 Saison de croissance

Bopp et al., *Global Biogeochemical Cycles*, 2001
Impact des processus biologiques sur la chimie de l'océan

Ecosystème pélagique

Zone de pénombre: hétérotrope et dynamics des particules

Export = F(Exp₁₀₀, z)

Depth

DOM, nutrients

100 m

Euphotic Layer

Particles

Phytoplankton

Fecal pellets

Mineral ballast

Aggregation

Disaggregation

Grazer

Remineralisation (org, CaCO₃, SiO₂)

Sinking speed

1 mm
Un océan dont
La chimie change

Le monde d’aujourd'hui
pCO₂: 280-380 ppmV

Un monde riche en CO₂
pCO₂: 580-720 ppmV
Calcification
-45 %

Gephyrocapsa oceanica

Emiliania huxleyi

Calciscus leptoporus

-9 à -18 %

El Niño : enfant terrible des tropiques
El Niño : caractéristiques
El Niño : une histoire

La maturité

Une phase de développement

El Niño

Southern Oscillation

4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0

METEO FRANCE
Toujours un temps d'événements
El Niño dans les modèles couplés – état moyen

Alizés trop forts

Relaxation du printemps Souvent absente

Guilyardi (2006)

Comment aborder la régionalisation ?

- Améliorer couverture et continuité des observations
- Nécessité d'une approche multimodèle pour répondre à la question des incertitudes
- Constitution d'ensembles dans le cadre européen
- Expériences coordonnées de validation
- Méthodologie appropriée pour certains phénomènes pour tenir compte de spécificités locales
Nombre de jours de canicule estivale (anomalie de +5° pendant au moins 6 jours consécutifs)

2055 2065 2075 2085 2095

A1B A2 B1
Merci de votre attention.